This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem mucl

Description: Closure of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion mucl
|- ( A e. NN -> ( mmu ` A ) e. ZZ )

Proof

Step Hyp Ref Expression
1 muf
 |-  mmu : NN --> ZZ
2 1 ffvelcdmi
 |-  ( A e. NN -> ( mmu ` A ) e. ZZ )