This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012) (Proof shortened by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprmfct | |- ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
|
| 2 | eleq1 | |- ( x = 1 -> ( x e. ( ZZ>= ` 2 ) <-> 1 e. ( ZZ>= ` 2 ) ) ) |
|
| 3 | 2 | imbi1d | |- ( x = 1 -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( 1 e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) ) ) |
| 4 | eleq1 | |- ( x = y -> ( x e. ( ZZ>= ` 2 ) <-> y e. ( ZZ>= ` 2 ) ) ) |
|
| 5 | breq2 | |- ( x = y -> ( p || x <-> p || y ) ) |
|
| 6 | 5 | rexbidv | |- ( x = y -> ( E. p e. Prime p || x <-> E. p e. Prime p || y ) ) |
| 7 | 4 6 | imbi12d | |- ( x = y -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) ) ) |
| 8 | eleq1 | |- ( x = z -> ( x e. ( ZZ>= ` 2 ) <-> z e. ( ZZ>= ` 2 ) ) ) |
|
| 9 | breq2 | |- ( x = z -> ( p || x <-> p || z ) ) |
|
| 10 | 9 | rexbidv | |- ( x = z -> ( E. p e. Prime p || x <-> E. p e. Prime p || z ) ) |
| 11 | 8 10 | imbi12d | |- ( x = z -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( z e. ( ZZ>= ` 2 ) -> E. p e. Prime p || z ) ) ) |
| 12 | eleq1 | |- ( x = ( y x. z ) -> ( x e. ( ZZ>= ` 2 ) <-> ( y x. z ) e. ( ZZ>= ` 2 ) ) ) |
|
| 13 | breq2 | |- ( x = ( y x. z ) -> ( p || x <-> p || ( y x. z ) ) ) |
|
| 14 | 13 | rexbidv | |- ( x = ( y x. z ) -> ( E. p e. Prime p || x <-> E. p e. Prime p || ( y x. z ) ) ) |
| 15 | 12 14 | imbi12d | |- ( x = ( y x. z ) -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
| 16 | eleq1 | |- ( x = N -> ( x e. ( ZZ>= ` 2 ) <-> N e. ( ZZ>= ` 2 ) ) ) |
|
| 17 | breq2 | |- ( x = N -> ( p || x <-> p || N ) ) |
|
| 18 | 17 | rexbidv | |- ( x = N -> ( E. p e. Prime p || x <-> E. p e. Prime p || N ) ) |
| 19 | 16 18 | imbi12d | |- ( x = N -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) ) ) |
| 20 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 21 | uz2m1nn | |- ( 1 e. ( ZZ>= ` 2 ) -> ( 1 - 1 ) e. NN ) |
|
| 22 | 20 21 | eqeltrrid | |- ( 1 e. ( ZZ>= ` 2 ) -> 0 e. NN ) |
| 23 | 0nnn | |- -. 0 e. NN |
|
| 24 | 23 | pm2.21i | |- ( 0 e. NN -> E. p e. Prime p || x ) |
| 25 | 22 24 | syl | |- ( 1 e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) |
| 26 | prmz | |- ( x e. Prime -> x e. ZZ ) |
|
| 27 | iddvds | |- ( x e. ZZ -> x || x ) |
|
| 28 | 26 27 | syl | |- ( x e. Prime -> x || x ) |
| 29 | breq1 | |- ( p = x -> ( p || x <-> x || x ) ) |
|
| 30 | 29 | rspcev | |- ( ( x e. Prime /\ x || x ) -> E. p e. Prime p || x ) |
| 31 | 28 30 | mpdan | |- ( x e. Prime -> E. p e. Prime p || x ) |
| 32 | 31 | a1d | |- ( x e. Prime -> ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) ) |
| 33 | simpl | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> y e. ( ZZ>= ` 2 ) ) |
|
| 34 | eluzelz | |- ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) |
|
| 35 | 34 | ad2antrr | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> y e. ZZ ) |
| 36 | eluzelz | |- ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) |
|
| 37 | 36 | ad2antlr | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> z e. ZZ ) |
| 38 | dvdsmul1 | |- ( ( y e. ZZ /\ z e. ZZ ) -> y || ( y x. z ) ) |
|
| 39 | 35 37 38 | syl2anc | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> y || ( y x. z ) ) |
| 40 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 41 | 40 | adantl | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 42 | 35 37 | zmulcld | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( y x. z ) e. ZZ ) |
| 43 | dvdstr | |- ( ( p e. ZZ /\ y e. ZZ /\ ( y x. z ) e. ZZ ) -> ( ( p || y /\ y || ( y x. z ) ) -> p || ( y x. z ) ) ) |
|
| 44 | 41 35 42 43 | syl3anc | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( ( p || y /\ y || ( y x. z ) ) -> p || ( y x. z ) ) ) |
| 45 | 39 44 | mpan2d | |- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( p || y -> p || ( y x. z ) ) ) |
| 46 | 45 | reximdva | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( E. p e. Prime p || y -> E. p e. Prime p || ( y x. z ) ) ) |
| 47 | 33 46 | embantd | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) -> E. p e. Prime p || ( y x. z ) ) ) |
| 48 | 47 | a1dd | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) -> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
| 49 | 48 | adantrd | |- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) /\ ( z e. ( ZZ>= ` 2 ) -> E. p e. Prime p || z ) ) -> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
| 50 | 3 7 11 15 19 25 32 49 | prmind | |- ( N e. NN -> ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) ) |
| 51 | 1 50 | mpcom | |- ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) |