This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate a collapsing sum over the Möbius function. (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | musumsum.1 | |- ( m = 1 -> B = C ) |
|
| musumsum.2 | |- ( ph -> A e. Fin ) |
||
| musumsum.3 | |- ( ph -> A C_ NN ) |
||
| musumsum.4 | |- ( ph -> 1 e. A ) |
||
| musumsum.5 | |- ( ( ph /\ m e. A ) -> B e. CC ) |
||
| Assertion | musumsum | |- ( ph -> sum_ m e. A sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | musumsum.1 | |- ( m = 1 -> B = C ) |
|
| 2 | musumsum.2 | |- ( ph -> A e. Fin ) |
|
| 3 | musumsum.3 | |- ( ph -> A C_ NN ) |
|
| 4 | musumsum.4 | |- ( ph -> 1 e. A ) |
|
| 5 | musumsum.5 | |- ( ( ph /\ m e. A ) -> B e. CC ) |
|
| 6 | 3 | sselda | |- ( ( ph /\ m e. A ) -> m e. NN ) |
| 7 | musum | |- ( m e. NN -> sum_ k e. { n e. NN | n || m } ( mmu ` k ) = if ( m = 1 , 1 , 0 ) ) |
|
| 8 | 6 7 | syl | |- ( ( ph /\ m e. A ) -> sum_ k e. { n e. NN | n || m } ( mmu ` k ) = if ( m = 1 , 1 , 0 ) ) |
| 9 | 8 | oveq1d | |- ( ( ph /\ m e. A ) -> ( sum_ k e. { n e. NN | n || m } ( mmu ` k ) x. B ) = ( if ( m = 1 , 1 , 0 ) x. B ) ) |
| 10 | fzfid | |- ( ( ph /\ m e. A ) -> ( 1 ... m ) e. Fin ) |
|
| 11 | dvdsssfz1 | |- ( m e. NN -> { n e. NN | n || m } C_ ( 1 ... m ) ) |
|
| 12 | 6 11 | syl | |- ( ( ph /\ m e. A ) -> { n e. NN | n || m } C_ ( 1 ... m ) ) |
| 13 | 10 12 | ssfid | |- ( ( ph /\ m e. A ) -> { n e. NN | n || m } e. Fin ) |
| 14 | elrabi | |- ( k e. { n e. NN | n || m } -> k e. NN ) |
|
| 15 | mucl | |- ( k e. NN -> ( mmu ` k ) e. ZZ ) |
|
| 16 | 14 15 | syl | |- ( k e. { n e. NN | n || m } -> ( mmu ` k ) e. ZZ ) |
| 17 | 16 | zcnd | |- ( k e. { n e. NN | n || m } -> ( mmu ` k ) e. CC ) |
| 18 | 17 | adantl | |- ( ( ( ph /\ m e. A ) /\ k e. { n e. NN | n || m } ) -> ( mmu ` k ) e. CC ) |
| 19 | 13 5 18 | fsummulc1 | |- ( ( ph /\ m e. A ) -> ( sum_ k e. { n e. NN | n || m } ( mmu ` k ) x. B ) = sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) ) |
| 20 | ovif | |- ( if ( m = 1 , 1 , 0 ) x. B ) = if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) |
|
| 21 | velsn | |- ( m e. { 1 } <-> m = 1 ) |
|
| 22 | 21 | bicomi | |- ( m = 1 <-> m e. { 1 } ) |
| 23 | 22 | a1i | |- ( B e. CC -> ( m = 1 <-> m e. { 1 } ) ) |
| 24 | mullid | |- ( B e. CC -> ( 1 x. B ) = B ) |
|
| 25 | mul02 | |- ( B e. CC -> ( 0 x. B ) = 0 ) |
|
| 26 | 23 24 25 | ifbieq12d | |- ( B e. CC -> if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) = if ( m e. { 1 } , B , 0 ) ) |
| 27 | 5 26 | syl | |- ( ( ph /\ m e. A ) -> if ( m = 1 , ( 1 x. B ) , ( 0 x. B ) ) = if ( m e. { 1 } , B , 0 ) ) |
| 28 | 20 27 | eqtrid | |- ( ( ph /\ m e. A ) -> ( if ( m = 1 , 1 , 0 ) x. B ) = if ( m e. { 1 } , B , 0 ) ) |
| 29 | 9 19 28 | 3eqtr3d | |- ( ( ph /\ m e. A ) -> sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = if ( m e. { 1 } , B , 0 ) ) |
| 30 | 29 | sumeq2dv | |- ( ph -> sum_ m e. A sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
| 31 | 4 | snssd | |- ( ph -> { 1 } C_ A ) |
| 32 | 31 | sselda | |- ( ( ph /\ m e. { 1 } ) -> m e. A ) |
| 33 | 32 5 | syldan | |- ( ( ph /\ m e. { 1 } ) -> B e. CC ) |
| 34 | 33 | ralrimiva | |- ( ph -> A. m e. { 1 } B e. CC ) |
| 35 | 2 | olcd | |- ( ph -> ( A C_ ( ZZ>= ` 1 ) \/ A e. Fin ) ) |
| 36 | sumss2 | |- ( ( ( { 1 } C_ A /\ A. m e. { 1 } B e. CC ) /\ ( A C_ ( ZZ>= ` 1 ) \/ A e. Fin ) ) -> sum_ m e. { 1 } B = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
|
| 37 | 31 34 35 36 | syl21anc | |- ( ph -> sum_ m e. { 1 } B = sum_ m e. A if ( m e. { 1 } , B , 0 ) ) |
| 38 | 1 | eleq1d | |- ( m = 1 -> ( B e. CC <-> C e. CC ) ) |
| 39 | 5 | ralrimiva | |- ( ph -> A. m e. A B e. CC ) |
| 40 | 38 39 4 | rspcdva | |- ( ph -> C e. CC ) |
| 41 | 1 | sumsn | |- ( ( 1 e. A /\ C e. CC ) -> sum_ m e. { 1 } B = C ) |
| 42 | 4 40 41 | syl2anc | |- ( ph -> sum_ m e. { 1 } B = C ) |
| 43 | 30 37 42 | 3eqtr2d | |- ( ph -> sum_ m e. A sum_ k e. { n e. NN | n || m } ( ( mmu ` k ) x. B ) = C ) |