This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of the binomial theorem for ( 1 + A ) ^ N . (Contributed by Paul Chapman, 10-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom1p | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | binom | |- ( ( 1 e. CC /\ A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) ) |
| 4 | fznn0sub | |- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
|
| 5 | 4 | adantl | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
| 6 | 5 | nn0zd | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ZZ ) |
| 7 | 1exp | |- ( ( N - k ) e. ZZ -> ( 1 ^ ( N - k ) ) = 1 ) |
|
| 8 | 6 7 | syl | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( 1 ^ ( N - k ) ) = 1 ) |
| 9 | 8 | oveq1d | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) = ( 1 x. ( A ^ k ) ) ) |
| 10 | simpl | |- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
|
| 11 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 12 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A ^ k ) e. CC ) |
| 14 | 13 | mullidd | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( 1 x. ( A ^ k ) ) = ( A ^ k ) ) |
| 15 | 9 14 | eqtrd | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) = ( A ^ k ) ) |
| 16 | 15 | oveq2d | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) = ( ( N _C k ) x. ( A ^ k ) ) ) |
| 17 | 16 | sumeq2dv | |- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( A ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |
| 18 | 3 17 | eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |