This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius inversion formula. If G ( n ) = sum_ k || n F ( k ) for every n e. NN , then F ( n ) = sum_ k || n mmu ( k ) G ( n / k ) = sum_ k || n mmu ( n / k ) G ( k ) , i.e. the Möbius function is the Dirichlet convolution inverse of the constant function 1 . Theorem 2.9 in ApostolNT p. 32. (Contributed by Mario Carneiro, 2-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muinv.1 | |- ( ph -> F : NN --> CC ) |
|
| muinv.2 | |- ( ph -> G = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ) |
||
| Assertion | muinv | |- ( ph -> F = ( m e. NN |-> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muinv.1 | |- ( ph -> F : NN --> CC ) |
|
| 2 | muinv.2 | |- ( ph -> G = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ) |
|
| 3 | 1 | feqmptd | |- ( ph -> F = ( m e. NN |-> ( F ` m ) ) ) |
| 4 | 2 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> G = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ) |
| 5 | 4 | fveq1d | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( G ` ( m / j ) ) = ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) ) |
| 6 | breq1 | |- ( x = j -> ( x || m <-> j || m ) ) |
|
| 7 | 6 | elrab | |- ( j e. { x e. NN | x || m } <-> ( j e. NN /\ j || m ) ) |
| 8 | 7 | simprbi | |- ( j e. { x e. NN | x || m } -> j || m ) |
| 9 | 8 | adantl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j || m ) |
| 10 | elrabi | |- ( j e. { x e. NN | x || m } -> j e. NN ) |
|
| 11 | 10 | adantl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j e. NN ) |
| 12 | 11 | nnzd | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j e. ZZ ) |
| 13 | 11 | nnne0d | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> j =/= 0 ) |
| 14 | nnz | |- ( m e. NN -> m e. ZZ ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> m e. ZZ ) |
| 16 | dvdsval2 | |- ( ( j e. ZZ /\ j =/= 0 /\ m e. ZZ ) -> ( j || m <-> ( m / j ) e. ZZ ) ) |
|
| 17 | 12 13 15 16 | syl3anc | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( j || m <-> ( m / j ) e. ZZ ) ) |
| 18 | 9 17 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m / j ) e. ZZ ) |
| 19 | nnre | |- ( m e. NN -> m e. RR ) |
|
| 20 | nngt0 | |- ( m e. NN -> 0 < m ) |
|
| 21 | 19 20 | jca | |- ( m e. NN -> ( m e. RR /\ 0 < m ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m e. RR /\ 0 < m ) ) |
| 23 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 24 | nngt0 | |- ( j e. NN -> 0 < j ) |
|
| 25 | 23 24 | jca | |- ( j e. NN -> ( j e. RR /\ 0 < j ) ) |
| 26 | 11 25 | syl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( j e. RR /\ 0 < j ) ) |
| 27 | divgt0 | |- ( ( ( m e. RR /\ 0 < m ) /\ ( j e. RR /\ 0 < j ) ) -> 0 < ( m / j ) ) |
|
| 28 | 22 26 27 | syl2anc | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> 0 < ( m / j ) ) |
| 29 | elnnz | |- ( ( m / j ) e. NN <-> ( ( m / j ) e. ZZ /\ 0 < ( m / j ) ) ) |
|
| 30 | 18 28 29 | sylanbrc | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( m / j ) e. NN ) |
| 31 | breq2 | |- ( n = ( m / j ) -> ( x || n <-> x || ( m / j ) ) ) |
|
| 32 | 31 | rabbidv | |- ( n = ( m / j ) -> { x e. NN | x || n } = { x e. NN | x || ( m / j ) } ) |
| 33 | 32 | sumeq1d | |- ( n = ( m / j ) -> sum_ k e. { x e. NN | x || n } ( F ` k ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 34 | eqid | |- ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) = ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) |
|
| 35 | sumex | |- sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) e. _V |
|
| 36 | 33 34 35 | fvmpt | |- ( ( m / j ) e. NN -> ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 37 | 30 36 | syl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( n e. NN |-> sum_ k e. { x e. NN | x || n } ( F ` k ) ) ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 38 | 5 37 | eqtrd | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( G ` ( m / j ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) |
| 39 | 38 | oveq2d | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = ( ( mmu ` j ) x. sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) ) |
| 40 | fzfid | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( 1 ... ( m / j ) ) e. Fin ) |
|
| 41 | dvdsssfz1 | |- ( ( m / j ) e. NN -> { x e. NN | x || ( m / j ) } C_ ( 1 ... ( m / j ) ) ) |
|
| 42 | 30 41 | syl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / j ) } C_ ( 1 ... ( m / j ) ) ) |
| 43 | 40 42 | ssfid | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / j ) } e. Fin ) |
| 44 | mucl | |- ( j e. NN -> ( mmu ` j ) e. ZZ ) |
|
| 45 | 11 44 | syl | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( mmu ` j ) e. ZZ ) |
| 46 | 45 | zcnd | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( mmu ` j ) e. CC ) |
| 47 | 1 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> F : NN --> CC ) |
| 48 | elrabi | |- ( k e. { x e. NN | x || ( m / j ) } -> k e. NN ) |
|
| 49 | ffvelcdm | |- ( ( F : NN --> CC /\ k e. NN ) -> ( F ` k ) e. CC ) |
|
| 50 | 47 48 49 | syl2an | |- ( ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) /\ k e. { x e. NN | x || ( m / j ) } ) -> ( F ` k ) e. CC ) |
| 51 | 43 46 50 | fsummulc2 | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. sum_ k e. { x e. NN | x || ( m / j ) } ( F ` k ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 52 | 39 51 | eqtrd | |- ( ( ( ph /\ m e. NN ) /\ j e. { x e. NN | x || m } ) -> ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 53 | 52 | sumeq2dv | |- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = sum_ j e. { x e. NN | x || m } sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 54 | simpr | |- ( ( ph /\ m e. NN ) -> m e. NN ) |
|
| 55 | 46 | adantrr | |- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( mmu ` j ) e. CC ) |
| 56 | 50 | anasss | |- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( F ` k ) e. CC ) |
| 57 | 55 56 | mulcld | |- ( ( ( ph /\ m e. NN ) /\ ( j e. { x e. NN | x || m } /\ k e. { x e. NN | x || ( m / j ) } ) ) -> ( ( mmu ` j ) x. ( F ` k ) ) e. CC ) |
| 58 | 54 57 | fsumdvdsdiag | |- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } sum_ k e. { x e. NN | x || ( m / j ) } ( ( mmu ` j ) x. ( F ` k ) ) = sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 59 | ssrab2 | |- { x e. NN | x || m } C_ NN |
|
| 60 | dvdsdivcl | |- ( ( m e. NN /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. { x e. NN | x || m } ) |
|
| 61 | 60 | adantll | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. { x e. NN | x || m } ) |
| 62 | 59 61 | sselid | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( m / k ) e. NN ) |
| 63 | musum | |- ( ( m / k ) e. NN -> sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) = if ( ( m / k ) = 1 , 1 , 0 ) ) |
|
| 64 | 62 63 | syl | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) = if ( ( m / k ) = 1 , 1 , 0 ) ) |
| 65 | 64 | oveq1d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) x. ( F ` k ) ) = ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) ) |
| 66 | fzfid | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 1 ... ( m / k ) ) e. Fin ) |
|
| 67 | dvdsssfz1 | |- ( ( m / k ) e. NN -> { x e. NN | x || ( m / k ) } C_ ( 1 ... ( m / k ) ) ) |
|
| 68 | 62 67 | syl | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / k ) } C_ ( 1 ... ( m / k ) ) ) |
| 69 | 66 68 | ssfid | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> { x e. NN | x || ( m / k ) } e. Fin ) |
| 70 | 1 | adantr | |- ( ( ph /\ m e. NN ) -> F : NN --> CC ) |
| 71 | elrabi | |- ( k e. { x e. NN | x || m } -> k e. NN ) |
|
| 72 | 70 71 49 | syl2an | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( F ` k ) e. CC ) |
| 73 | ssrab2 | |- { x e. NN | x || ( m / k ) } C_ NN |
|
| 74 | simpr | |- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> j e. { x e. NN | x || ( m / k ) } ) |
|
| 75 | 73 74 | sselid | |- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> j e. NN ) |
| 76 | 75 44 | syl | |- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> ( mmu ` j ) e. ZZ ) |
| 77 | 76 | zcnd | |- ( ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) /\ j e. { x e. NN | x || ( m / k ) } ) -> ( mmu ` j ) e. CC ) |
| 78 | 69 72 77 | fsummulc1 | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( sum_ j e. { x e. NN | x || ( m / k ) } ( mmu ` j ) x. ( F ` k ) ) = sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) ) |
| 79 | ovif | |- ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) = if ( ( m / k ) = 1 , ( 1 x. ( F ` k ) ) , ( 0 x. ( F ` k ) ) ) |
|
| 80 | nncn | |- ( m e. NN -> m e. CC ) |
|
| 81 | 80 | ad2antlr | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> m e. CC ) |
| 82 | 71 | adantl | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k e. NN ) |
| 83 | 82 | nncnd | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k e. CC ) |
| 84 | 1cnd | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> 1 e. CC ) |
|
| 85 | 82 | nnne0d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> k =/= 0 ) |
| 86 | 81 83 84 85 | divmuld | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( m / k ) = 1 <-> ( k x. 1 ) = m ) ) |
| 87 | 83 | mulridd | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( k x. 1 ) = k ) |
| 88 | 87 | eqeq1d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( k x. 1 ) = m <-> k = m ) ) |
| 89 | 86 88 | bitrd | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( ( m / k ) = 1 <-> k = m ) ) |
| 90 | 72 | mullidd | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 1 x. ( F ` k ) ) = ( F ` k ) ) |
| 91 | 72 | mul02d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( 0 x. ( F ` k ) ) = 0 ) |
| 92 | 89 90 91 | ifbieq12d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> if ( ( m / k ) = 1 , ( 1 x. ( F ` k ) ) , ( 0 x. ( F ` k ) ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 93 | 79 92 | eqtrid | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> ( if ( ( m / k ) = 1 , 1 , 0 ) x. ( F ` k ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 94 | 65 78 93 | 3eqtr3d | |- ( ( ( ph /\ m e. NN ) /\ k e. { x e. NN | x || m } ) -> sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = if ( k = m , ( F ` k ) , 0 ) ) |
| 95 | 94 | sumeq2dv | |- ( ( ph /\ m e. NN ) -> sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = sum_ k e. { x e. NN | x || m } if ( k = m , ( F ` k ) , 0 ) ) |
| 96 | breq1 | |- ( x = m -> ( x || m <-> m || m ) ) |
|
| 97 | 54 | nnzd | |- ( ( ph /\ m e. NN ) -> m e. ZZ ) |
| 98 | iddvds | |- ( m e. ZZ -> m || m ) |
|
| 99 | 97 98 | syl | |- ( ( ph /\ m e. NN ) -> m || m ) |
| 100 | 96 54 99 | elrabd | |- ( ( ph /\ m e. NN ) -> m e. { x e. NN | x || m } ) |
| 101 | 100 | snssd | |- ( ( ph /\ m e. NN ) -> { m } C_ { x e. NN | x || m } ) |
| 102 | 101 | sselda | |- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> k e. { x e. NN | x || m } ) |
| 103 | 102 72 | syldan | |- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> ( F ` k ) e. CC ) |
| 104 | 0cn | |- 0 e. CC |
|
| 105 | ifcl | |- ( ( ( F ` k ) e. CC /\ 0 e. CC ) -> if ( k = m , ( F ` k ) , 0 ) e. CC ) |
|
| 106 | 103 104 105 | sylancl | |- ( ( ( ph /\ m e. NN ) /\ k e. { m } ) -> if ( k = m , ( F ` k ) , 0 ) e. CC ) |
| 107 | eldifsni | |- ( k e. ( { x e. NN | x || m } \ { m } ) -> k =/= m ) |
|
| 108 | 107 | adantl | |- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> k =/= m ) |
| 109 | 108 | neneqd | |- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> -. k = m ) |
| 110 | 109 | iffalsed | |- ( ( ( ph /\ m e. NN ) /\ k e. ( { x e. NN | x || m } \ { m } ) ) -> if ( k = m , ( F ` k ) , 0 ) = 0 ) |
| 111 | fzfid | |- ( ( ph /\ m e. NN ) -> ( 1 ... m ) e. Fin ) |
|
| 112 | dvdsssfz1 | |- ( m e. NN -> { x e. NN | x || m } C_ ( 1 ... m ) ) |
|
| 113 | 112 | adantl | |- ( ( ph /\ m e. NN ) -> { x e. NN | x || m } C_ ( 1 ... m ) ) |
| 114 | 111 113 | ssfid | |- ( ( ph /\ m e. NN ) -> { x e. NN | x || m } e. Fin ) |
| 115 | 101 106 110 114 | fsumss | |- ( ( ph /\ m e. NN ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = sum_ k e. { x e. NN | x || m } if ( k = m , ( F ` k ) , 0 ) ) |
| 116 | 1 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( F ` m ) e. CC ) |
| 117 | iftrue | |- ( k = m -> if ( k = m , ( F ` k ) , 0 ) = ( F ` k ) ) |
|
| 118 | fveq2 | |- ( k = m -> ( F ` k ) = ( F ` m ) ) |
|
| 119 | 117 118 | eqtrd | |- ( k = m -> if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 120 | 119 | sumsn | |- ( ( m e. NN /\ ( F ` m ) e. CC ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 121 | 54 116 120 | syl2anc | |- ( ( ph /\ m e. NN ) -> sum_ k e. { m } if ( k = m , ( F ` k ) , 0 ) = ( F ` m ) ) |
| 122 | 95 115 121 | 3eqtr2d | |- ( ( ph /\ m e. NN ) -> sum_ k e. { x e. NN | x || m } sum_ j e. { x e. NN | x || ( m / k ) } ( ( mmu ` j ) x. ( F ` k ) ) = ( F ` m ) ) |
| 123 | 53 58 122 | 3eqtrd | |- ( ( ph /\ m e. NN ) -> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) = ( F ` m ) ) |
| 124 | 123 | mpteq2dva | |- ( ph -> ( m e. NN |-> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) ) = ( m e. NN |-> ( F ` m ) ) ) |
| 125 | 3 124 | eqtr4d | |- ( ph -> F = ( m e. NN |-> sum_ j e. { x e. NN | x || m } ( ( mmu ` j ) x. ( G ` ( m / j ) ) ) ) ) |