This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of a finite set is finite and vice-versa. Theorem 38 of Suppes p. 104 and its converse, Theorem 40 of Suppes p. 105. (Contributed by NM, 26-Mar-2007) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | |- ( x = (/) -> ~P x = ~P (/) ) |
|
| 2 | 1 | eleq1d | |- ( x = (/) -> ( ~P x e. Fin <-> ~P (/) e. Fin ) ) |
| 3 | pweq | |- ( x = y -> ~P x = ~P y ) |
|
| 4 | 3 | eleq1d | |- ( x = y -> ( ~P x e. Fin <-> ~P y e. Fin ) ) |
| 5 | pweq | |- ( x = ( y u. { z } ) -> ~P x = ~P ( y u. { z } ) ) |
|
| 6 | 5 | eleq1d | |- ( x = ( y u. { z } ) -> ( ~P x e. Fin <-> ~P ( y u. { z } ) e. Fin ) ) |
| 7 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 8 | 7 | eleq1d | |- ( x = A -> ( ~P x e. Fin <-> ~P A e. Fin ) ) |
| 9 | pw0 | |- ~P (/) = { (/) } |
|
| 10 | snfi | |- { (/) } e. Fin |
|
| 11 | 9 10 | eqeltri | |- ~P (/) e. Fin |
| 12 | eqid | |- ( c e. ~P y |-> ( c u. { z } ) ) = ( c e. ~P y |-> ( c u. { z } ) ) |
|
| 13 | 12 | pwfilem | |- ( ~P y e. Fin -> ~P ( y u. { z } ) e. Fin ) |
| 14 | 13 | a1i | |- ( y e. Fin -> ( ~P y e. Fin -> ~P ( y u. { z } ) e. Fin ) ) |
| 15 | 2 4 6 8 11 14 | findcard2 | |- ( A e. Fin -> ~P A e. Fin ) |
| 16 | pwfir | |- ( ~P A e. Fin -> A e. Fin ) |
|
| 17 | 15 16 | impbii | |- ( A e. Fin <-> ~P A e. Fin ) |