This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of prime divisors of a number is a finite set. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmdvdsfi | |- ( A e. NN -> { p e. Prime | p || A } e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfi | |- ( 1 ... A ) e. Fin |
|
| 2 | prmssnn | |- Prime C_ NN |
|
| 3 | rabss2 | |- ( Prime C_ NN -> { p e. Prime | p || A } C_ { p e. NN | p || A } ) |
|
| 4 | 2 3 | ax-mp | |- { p e. Prime | p || A } C_ { p e. NN | p || A } |
| 5 | dvdsssfz1 | |- ( A e. NN -> { p e. NN | p || A } C_ ( 1 ... A ) ) |
|
| 6 | 4 5 | sstrid | |- ( A e. NN -> { p e. Prime | p || A } C_ ( 1 ... A ) ) |
| 7 | ssfi | |- ( ( ( 1 ... A ) e. Fin /\ { p e. Prime | p || A } C_ ( 1 ... A ) ) -> { p e. Prime | p || A } e. Fin ) |
|
| 8 | 1 6 7 | sylancr | |- ( A e. NN -> { p e. Prime | p || A } e. Fin ) |