This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: L'Hôpital's Rule. If I is an open set of the reals, F and G are real functions on A containing all of I except possibly B , which are differentiable everywhere on I \ { B } , F and G both approach 0, and the limit of F ' ( x ) / G ' ( x ) at B is C , then the limit F ( x ) / G ( x ) at B also exists and equals C . This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhop.a | |- ( ph -> A C_ RR ) |
|
| lhop.f | |- ( ph -> F : A --> RR ) |
||
| lhop.g | |- ( ph -> G : A --> RR ) |
||
| lhop.i | |- ( ph -> I e. ( topGen ` ran (,) ) ) |
||
| lhop.b | |- ( ph -> B e. I ) |
||
| lhop.d | |- D = ( I \ { B } ) |
||
| lhop.if | |- ( ph -> D C_ dom ( RR _D F ) ) |
||
| lhop.ig | |- ( ph -> D C_ dom ( RR _D G ) ) |
||
| lhop.f0 | |- ( ph -> 0 e. ( F limCC B ) ) |
||
| lhop.g0 | |- ( ph -> 0 e. ( G limCC B ) ) |
||
| lhop.gn0 | |- ( ph -> -. 0 e. ( G " D ) ) |
||
| lhop.gd0 | |- ( ph -> -. 0 e. ( ( RR _D G ) " D ) ) |
||
| lhop.c | |- ( ph -> C e. ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
||
| Assertion | lhop | |- ( ph -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhop.a | |- ( ph -> A C_ RR ) |
|
| 2 | lhop.f | |- ( ph -> F : A --> RR ) |
|
| 3 | lhop.g | |- ( ph -> G : A --> RR ) |
|
| 4 | lhop.i | |- ( ph -> I e. ( topGen ` ran (,) ) ) |
|
| 5 | lhop.b | |- ( ph -> B e. I ) |
|
| 6 | lhop.d | |- D = ( I \ { B } ) |
|
| 7 | lhop.if | |- ( ph -> D C_ dom ( RR _D F ) ) |
|
| 8 | lhop.ig | |- ( ph -> D C_ dom ( RR _D G ) ) |
|
| 9 | lhop.f0 | |- ( ph -> 0 e. ( F limCC B ) ) |
|
| 10 | lhop.g0 | |- ( ph -> 0 e. ( G limCC B ) ) |
|
| 11 | lhop.gn0 | |- ( ph -> -. 0 e. ( G " D ) ) |
|
| 12 | lhop.gd0 | |- ( ph -> -. 0 e. ( ( RR _D G ) " D ) ) |
|
| 13 | lhop.c | |- ( ph -> C e. ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
|
| 14 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 15 | 14 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 16 | 15 | a1i | |- ( ph -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) ) |
| 17 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 18 | 14 17 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 19 | 18 | mopni2 | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ I e. ( topGen ` ran (,) ) /\ B e. I ) -> E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I ) |
| 20 | 16 4 5 19 | syl3anc | |- ( ph -> E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I ) |
| 21 | elssuni | |- ( I e. ( topGen ` ran (,) ) -> I C_ U. ( topGen ` ran (,) ) ) |
|
| 22 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 23 | 21 22 | sseqtrrdi | |- ( I e. ( topGen ` ran (,) ) -> I C_ RR ) |
| 24 | 4 23 | syl | |- ( ph -> I C_ RR ) |
| 25 | 24 5 | sseldd | |- ( ph -> B e. RR ) |
| 26 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 27 | 14 | bl2ioo | |- ( ( B e. RR /\ r e. RR ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 28 | 25 26 27 | syl2an | |- ( ( ph /\ r e. RR+ ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 29 | 28 | sseq1d | |- ( ( ph /\ r e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I <-> ( ( B - r ) (,) ( B + r ) ) C_ I ) ) |
| 30 | 25 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. RR ) |
| 31 | simprl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> r e. RR+ ) |
|
| 32 | 31 | rpred | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> r e. RR ) |
| 33 | 30 32 | resubcld | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) e. RR ) |
| 34 | 33 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) e. RR* ) |
| 35 | 30 31 | ltsubrpd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) < B ) |
| 36 | 2 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> F : A --> RR ) |
| 37 | ssun1 | |- ( ( B - r ) (,) B ) C_ ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
|
| 38 | unass | |- ( ( { B } u. ( ( B - r ) (,) B ) ) u. ( B (,) ( B + r ) ) ) = ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
|
| 39 | uncom | |- ( { B } u. ( ( B - r ) (,) B ) ) = ( ( ( B - r ) (,) B ) u. { B } ) |
|
| 40 | 39 | uneq1i | |- ( ( { B } u. ( ( B - r ) (,) B ) ) u. ( B (,) ( B + r ) ) ) = ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) |
| 41 | 38 40 | eqtr3i | |- ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) |
| 42 | 30 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. RR* ) |
| 43 | 30 32 | readdcld | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B + r ) e. RR ) |
| 44 | 43 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B + r ) e. RR* ) |
| 45 | 30 31 | ltaddrpd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B < ( B + r ) ) |
| 46 | ioojoin | |- ( ( ( ( B - r ) e. RR* /\ B e. RR* /\ ( B + r ) e. RR* ) /\ ( ( B - r ) < B /\ B < ( B + r ) ) ) -> ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
|
| 47 | 34 42 44 35 45 46 | syl32anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 48 | 41 47 | eqtrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 49 | elioo2 | |- ( ( ( B - r ) e. RR* /\ ( B + r ) e. RR* ) -> ( B e. ( ( B - r ) (,) ( B + r ) ) <-> ( B e. RR /\ ( B - r ) < B /\ B < ( B + r ) ) ) ) |
|
| 50 | 34 44 49 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B e. ( ( B - r ) (,) ( B + r ) ) <-> ( B e. RR /\ ( B - r ) < B /\ B < ( B + r ) ) ) ) |
| 51 | 30 35 45 50 | mpbir3and | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( B - r ) (,) ( B + r ) ) ) |
| 52 | 51 | snssd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> { B } C_ ( ( B - r ) (,) ( B + r ) ) ) |
| 53 | incom | |- ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) |
|
| 54 | ubioo | |- -. B e. ( ( B - r ) (,) B ) |
|
| 55 | lbioo | |- -. B e. ( B (,) ( B + r ) ) |
|
| 56 | 54 55 | pm3.2ni | |- -. ( B e. ( ( B - r ) (,) B ) \/ B e. ( B (,) ( B + r ) ) ) |
| 57 | elun | |- ( B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) <-> ( B e. ( ( B - r ) (,) B ) \/ B e. ( B (,) ( B + r ) ) ) ) |
|
| 58 | 56 57 | mtbir | |- -. B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
| 59 | disjsn | |- ( ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) = (/) <-> -. B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
|
| 60 | 58 59 | mpbir | |- ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) = (/) |
| 61 | 53 60 | eqtri | |- ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = (/) |
| 62 | uneqdifeq | |- ( ( { B } C_ ( ( B - r ) (,) ( B + r ) ) /\ ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = (/) ) -> ( ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) ) |
|
| 63 | 52 61 62 | sylancl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) ) |
| 64 | 48 63 | mpbid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
| 65 | 37 64 | sseqtrrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) |
| 66 | ssdif | |- ( ( ( B - r ) (,) ( B + r ) ) C_ I -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ ( I \ { B } ) ) |
|
| 67 | 66 | ad2antll | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ ( I \ { B } ) ) |
| 68 | 67 6 | sseqtrrdi | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ D ) |
| 69 | ax-resscn | |- RR C_ CC |
|
| 70 | 69 | a1i | |- ( ph -> RR C_ CC ) |
| 71 | fss | |- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
|
| 72 | 2 69 71 | sylancl | |- ( ph -> F : A --> CC ) |
| 73 | 70 72 1 | dvbss | |- ( ph -> dom ( RR _D F ) C_ A ) |
| 74 | 7 73 | sstrd | |- ( ph -> D C_ A ) |
| 75 | 74 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ A ) |
| 76 | 68 75 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ A ) |
| 77 | 65 76 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ A ) |
| 78 | 36 77 | fssresd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( F |` ( ( B - r ) (,) B ) ) : ( ( B - r ) (,) B ) --> RR ) |
| 79 | 3 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> G : A --> RR ) |
| 80 | 79 77 | fssresd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G |` ( ( B - r ) (,) B ) ) : ( ( B - r ) (,) B ) --> RR ) |
| 81 | 69 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> RR C_ CC ) |
| 82 | 72 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> F : A --> CC ) |
| 83 | 1 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> A C_ RR ) |
| 84 | ioossre | |- ( ( B - r ) (,) B ) C_ RR |
|
| 85 | 84 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ RR ) |
| 86 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 87 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 88 | 86 87 | dvres | |- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( ( B - r ) (,) B ) C_ RR ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 89 | 81 82 83 85 88 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 90 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 91 | iooretop | |- ( ( B - r ) (,) B ) e. ( topGen ` ran (,) ) |
|
| 92 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( B - r ) (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
|
| 93 | 90 91 92 | mp2an | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) |
| 94 | 93 | reseq2i | |- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) |
| 95 | 89 94 | eqtrdi | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ) |
| 96 | 95 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ) |
| 97 | 65 68 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ D ) |
| 98 | 7 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ dom ( RR _D F ) ) |
| 99 | 97 98 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ dom ( RR _D F ) ) |
| 100 | ssdmres | |- ( ( ( B - r ) (,) B ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
|
| 101 | 99 100 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 102 | 96 101 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( B - r ) (,) B ) ) |
| 103 | fss | |- ( ( G : A --> RR /\ RR C_ CC ) -> G : A --> CC ) |
|
| 104 | 3 69 103 | sylancl | |- ( ph -> G : A --> CC ) |
| 105 | 104 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> G : A --> CC ) |
| 106 | 86 87 | dvres | |- ( ( ( RR C_ CC /\ G : A --> CC ) /\ ( A C_ RR /\ ( ( B - r ) (,) B ) C_ RR ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 107 | 81 105 83 85 106 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 108 | 93 | reseq2i | |- ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) |
| 109 | 107 108 | eqtrdi | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 110 | 109 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 111 | 8 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ dom ( RR _D G ) ) |
| 112 | 97 111 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ dom ( RR _D G ) ) |
| 113 | ssdmres | |- ( ( ( B - r ) (,) B ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
|
| 114 | 112 113 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 115 | 110 114 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( B - r ) (,) B ) ) |
| 116 | limcresi | |- ( F limCC B ) C_ ( ( F |` ( ( B - r ) (,) B ) ) limCC B ) |
|
| 117 | 9 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( F limCC B ) ) |
| 118 | 116 117 | sselid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( F |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 119 | limcresi | |- ( G limCC B ) C_ ( ( G |` ( ( B - r ) (,) B ) ) limCC B ) |
|
| 120 | 10 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( G limCC B ) ) |
| 121 | 119 120 | sselid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( G |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 122 | df-ima | |- ( G " ( ( B - r ) (,) B ) ) = ran ( G |` ( ( B - r ) (,) B ) ) |
|
| 123 | imass2 | |- ( ( ( B - r ) (,) B ) C_ D -> ( G " ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
|
| 124 | 97 123 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G " ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
| 125 | 122 124 | eqsstrrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( G |` ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
| 126 | 11 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ( G " D ) ) |
| 127 | 125 126 | ssneldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( G |` ( ( B - r ) (,) B ) ) ) |
| 128 | 109 | rneqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ran ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 129 | df-ima | |- ( ( RR _D G ) " ( ( B - r ) (,) B ) ) = ran ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) |
|
| 130 | 128 129 | eqtr4di | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) " ( ( B - r ) (,) B ) ) ) |
| 131 | imass2 | |- ( ( ( B - r ) (,) B ) C_ D -> ( ( RR _D G ) " ( ( B - r ) (,) B ) ) C_ ( ( RR _D G ) " D ) ) |
|
| 132 | 97 131 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D G ) " ( ( B - r ) (,) B ) ) C_ ( ( RR _D G ) " D ) ) |
| 133 | 130 132 | eqsstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 134 | 12 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ( ( RR _D G ) " D ) ) |
| 135 | 133 134 | ssneldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ) |
| 136 | limcresi | |- ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) |
|
| 137 | 97 | resmptd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 138 | 95 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ` z ) ) |
| 139 | fvres | |- ( z e. ( ( B - r ) (,) B ) -> ( ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
|
| 140 | 138 139 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 141 | 109 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ` z ) ) |
| 142 | fvres | |- ( z e. ( ( B - r ) (,) B ) -> ( ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
|
| 143 | 141 142 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 144 | 140 143 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) = ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |
| 145 | 144 | mpteq2dva | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 146 | 137 145 | eqtr4d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) ) |
| 147 | 146 | oveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) = ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 148 | 136 147 | sseqtrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 149 | 13 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
| 150 | 148 149 | sseldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 151 | 34 30 35 78 80 102 115 118 121 127 135 150 | lhop2 | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) limCC B ) ) |
| 152 | 65 | resmptd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 153 | fvres | |- ( z e. ( ( B - r ) (,) B ) -> ( ( F |` ( ( B - r ) (,) B ) ) ` z ) = ( F ` z ) ) |
|
| 154 | fvres | |- ( z e. ( ( B - r ) (,) B ) -> ( ( G |` ( ( B - r ) (,) B ) ) ` z ) = ( G ` z ) ) |
|
| 155 | 153 154 | oveq12d | |- ( z e. ( ( B - r ) (,) B ) -> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
| 156 | 155 | mpteq2ia | |- ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |
| 157 | 152 156 | eqtr4di | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) ) |
| 158 | 157 | oveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) = ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) limCC B ) ) |
| 159 | 151 158 | eleqtrrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 160 | ssun2 | |- ( B (,) ( B + r ) ) C_ ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
|
| 161 | 160 64 | sseqtrrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) |
| 162 | 161 76 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ A ) |
| 163 | 36 162 | fssresd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( F |` ( B (,) ( B + r ) ) ) : ( B (,) ( B + r ) ) --> RR ) |
| 164 | 79 162 | fssresd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G |` ( B (,) ( B + r ) ) ) : ( B (,) ( B + r ) ) --> RR ) |
| 165 | ioossre | |- ( B (,) ( B + r ) ) C_ RR |
|
| 166 | 165 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ RR ) |
| 167 | 86 87 | dvres | |- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( B (,) ( B + r ) ) C_ RR ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 168 | 81 82 83 166 167 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 169 | iooretop | |- ( B (,) ( B + r ) ) e. ( topGen ` ran (,) ) |
|
| 170 | isopn3i | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( B (,) ( B + r ) ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
|
| 171 | 90 169 170 | mp2an | |- ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) |
| 172 | 171 | reseq2i | |- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) |
| 173 | 168 172 | eqtrdi | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ) |
| 174 | 173 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ) |
| 175 | 161 68 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ D ) |
| 176 | 175 98 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ dom ( RR _D F ) ) |
| 177 | ssdmres | |- ( ( B (,) ( B + r ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
|
| 178 | 176 177 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 179 | 174 178 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( B (,) ( B + r ) ) ) |
| 180 | 86 87 | dvres | |- ( ( ( RR C_ CC /\ G : A --> CC ) /\ ( A C_ RR /\ ( B (,) ( B + r ) ) C_ RR ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 181 | 81 105 83 166 180 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 182 | 171 | reseq2i | |- ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) |
| 183 | 181 182 | eqtrdi | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 184 | 183 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 185 | 175 111 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ dom ( RR _D G ) ) |
| 186 | ssdmres | |- ( ( B (,) ( B + r ) ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
|
| 187 | 185 186 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 188 | 184 187 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( B (,) ( B + r ) ) ) |
| 189 | limcresi | |- ( F limCC B ) C_ ( ( F |` ( B (,) ( B + r ) ) ) limCC B ) |
|
| 190 | 189 117 | sselid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( F |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 191 | limcresi | |- ( G limCC B ) C_ ( ( G |` ( B (,) ( B + r ) ) ) limCC B ) |
|
| 192 | 191 120 | sselid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( G |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 193 | df-ima | |- ( G " ( B (,) ( B + r ) ) ) = ran ( G |` ( B (,) ( B + r ) ) ) |
|
| 194 | imass2 | |- ( ( B (,) ( B + r ) ) C_ D -> ( G " ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
|
| 195 | 175 194 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G " ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
| 196 | 193 195 | eqsstrrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( G |` ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
| 197 | 196 126 | ssneldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( G |` ( B (,) ( B + r ) ) ) ) |
| 198 | 183 | rneqd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ran ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 199 | df-ima | |- ( ( RR _D G ) " ( B (,) ( B + r ) ) ) = ran ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) |
|
| 200 | 198 199 | eqtr4di | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) " ( B (,) ( B + r ) ) ) ) |
| 201 | imass2 | |- ( ( B (,) ( B + r ) ) C_ D -> ( ( RR _D G ) " ( B (,) ( B + r ) ) ) C_ ( ( RR _D G ) " D ) ) |
|
| 202 | 175 201 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D G ) " ( B (,) ( B + r ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 203 | 200 202 | eqsstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 204 | 203 134 | ssneldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ) |
| 205 | limcresi | |- ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) |
|
| 206 | 175 | resmptd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 207 | 173 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ` z ) ) |
| 208 | fvres | |- ( z e. ( B (,) ( B + r ) ) -> ( ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
|
| 209 | 207 208 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 210 | 183 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ` z ) ) |
| 211 | fvres | |- ( z e. ( B (,) ( B + r ) ) -> ( ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
|
| 212 | 210 211 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 213 | 209 212 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) = ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |
| 214 | 213 | mpteq2dva | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 215 | 206 214 | eqtr4d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) ) |
| 216 | 215 | oveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) = ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 217 | 205 216 | sseqtrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 218 | 217 149 | sseldd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 219 | 30 44 45 163 164 179 188 190 192 197 204 218 | lhop1 | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) limCC B ) ) |
| 220 | 161 | resmptd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 221 | fvres | |- ( z e. ( B (,) ( B + r ) ) -> ( ( F |` ( B (,) ( B + r ) ) ) ` z ) = ( F ` z ) ) |
|
| 222 | fvres | |- ( z e. ( B (,) ( B + r ) ) -> ( ( G |` ( B (,) ( B + r ) ) ) ` z ) = ( G ` z ) ) |
|
| 223 | 221 222 | oveq12d | |- ( z e. ( B (,) ( B + r ) ) -> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
| 224 | 223 | mpteq2ia | |- ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( F ` z ) / ( G ` z ) ) ) |
| 225 | 220 224 | eqtr4di | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) ) |
| 226 | 225 | oveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) = ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) limCC B ) ) |
| 227 | 219 226 | eleqtrrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 228 | 159 227 | elind | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) ) |
| 229 | 68 | resmptd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) = ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 230 | 229 | oveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) limCC B ) = ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 231 | 74 | sselda | |- ( ( ph /\ z e. D ) -> z e. A ) |
| 232 | 2 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 233 | 231 232 | syldan | |- ( ( ph /\ z e. D ) -> ( F ` z ) e. RR ) |
| 234 | 233 | recnd | |- ( ( ph /\ z e. D ) -> ( F ` z ) e. CC ) |
| 235 | 3 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( G ` z ) e. RR ) |
| 236 | 231 235 | syldan | |- ( ( ph /\ z e. D ) -> ( G ` z ) e. RR ) |
| 237 | 236 | recnd | |- ( ( ph /\ z e. D ) -> ( G ` z ) e. CC ) |
| 238 | 11 | adantr | |- ( ( ph /\ z e. D ) -> -. 0 e. ( G " D ) ) |
| 239 | 3 | ffnd | |- ( ph -> G Fn A ) |
| 240 | 239 | adantr | |- ( ( ph /\ z e. D ) -> G Fn A ) |
| 241 | 74 | adantr | |- ( ( ph /\ z e. D ) -> D C_ A ) |
| 242 | simpr | |- ( ( ph /\ z e. D ) -> z e. D ) |
|
| 243 | fnfvima | |- ( ( G Fn A /\ D C_ A /\ z e. D ) -> ( G ` z ) e. ( G " D ) ) |
|
| 244 | 240 241 242 243 | syl3anc | |- ( ( ph /\ z e. D ) -> ( G ` z ) e. ( G " D ) ) |
| 245 | eleq1 | |- ( ( G ` z ) = 0 -> ( ( G ` z ) e. ( G " D ) <-> 0 e. ( G " D ) ) ) |
|
| 246 | 244 245 | syl5ibcom | |- ( ( ph /\ z e. D ) -> ( ( G ` z ) = 0 -> 0 e. ( G " D ) ) ) |
| 247 | 246 | necon3bd | |- ( ( ph /\ z e. D ) -> ( -. 0 e. ( G " D ) -> ( G ` z ) =/= 0 ) ) |
| 248 | 238 247 | mpd | |- ( ( ph /\ z e. D ) -> ( G ` z ) =/= 0 ) |
| 249 | 234 237 248 | divcld | |- ( ( ph /\ z e. D ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 250 | 249 | adantlr | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. D ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 251 | 250 | fmpttd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) : D --> CC ) |
| 252 | difss | |- ( I \ { B } ) C_ I |
|
| 253 | 6 252 | eqsstri | |- D C_ I |
| 254 | 24 69 | sstrdi | |- ( ph -> I C_ CC ) |
| 255 | 253 254 | sstrid | |- ( ph -> D C_ CC ) |
| 256 | 255 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ CC ) |
| 257 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) |
|
| 258 | 6 | uneq1i | |- ( D u. { B } ) = ( ( I \ { B } ) u. { B } ) |
| 259 | undif1 | |- ( ( I \ { B } ) u. { B } ) = ( I u. { B } ) |
|
| 260 | 258 259 | eqtri | |- ( D u. { B } ) = ( I u. { B } ) |
| 261 | simprr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) C_ I ) |
|
| 262 | 52 261 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> { B } C_ I ) |
| 263 | ssequn2 | |- ( { B } C_ I <-> ( I u. { B } ) = I ) |
|
| 264 | 262 263 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( I u. { B } ) = I ) |
| 265 | 260 264 | eqtrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( D u. { B } ) = I ) |
| 266 | 265 | oveq2d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t I ) ) |
| 267 | 24 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I C_ RR ) |
| 268 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 269 | 86 268 | rerest | |- ( I C_ RR -> ( ( TopOpen ` CCfld ) |`t I ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 270 | 267 269 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 271 | 266 270 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 272 | 271 | fveq2d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) = ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ) |
| 273 | 272 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 274 | 86 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 275 | 254 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I C_ CC ) |
| 276 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ I C_ CC ) -> ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) ) |
|
| 277 | 274 275 276 | sylancr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) ) |
| 278 | topontop | |- ( ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) -> ( ( TopOpen ` CCfld ) |`t I ) e. Top ) |
|
| 279 | 277 278 | syl | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) e. Top ) |
| 280 | 270 279 | eqeltrrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( topGen ` ran (,) ) |`t I ) e. Top ) |
| 281 | iooretop | |- ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) |
|
| 282 | 281 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) ) |
| 283 | 4 | adantr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I e. ( topGen ` ran (,) ) ) |
| 284 | restopn2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ I e. ( topGen ` ran (,) ) ) -> ( ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) <-> ( ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) ) |
|
| 285 | 90 283 284 | sylancr | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) <-> ( ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) ) |
| 286 | 282 261 285 | mpbir2and | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) ) |
| 287 | isopn3i | |- ( ( ( ( topGen ` ran (,) ) |`t I ) e. Top /\ ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
|
| 288 | 280 286 287 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 289 | 273 288 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 290 | 51 289 | eleqtrrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 291 | undif1 | |- ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) = ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) |
|
| 292 | ssequn2 | |- ( { B } C_ ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
|
| 293 | 52 292 | sylib | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 294 | 291 293 | eqtrid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 295 | 294 | fveq2d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 296 | 290 295 | eleqtrrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) ) ) |
| 297 | 251 68 256 86 257 296 | limcres | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) limCC B ) = ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 298 | 84 69 | sstri | |- ( ( B - r ) (,) B ) C_ CC |
| 299 | 298 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ CC ) |
| 300 | 165 69 | sstri | |- ( B (,) ( B + r ) ) C_ CC |
| 301 | 300 | a1i | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ CC ) |
| 302 | 68 | sselda | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) -> z e. D ) |
| 303 | 302 250 | syldan | |- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 304 | 303 | fmpttd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) --> CC ) |
| 305 | 64 | feq2d | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) --> CC <-> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) --> CC ) ) |
| 306 | 304 305 | mpbid | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) --> CC ) |
| 307 | 299 301 306 | limcun | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) = ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) ) |
| 308 | 230 297 307 | 3eqtr3rd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) = ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 309 | 228 308 | eleqtrd | |- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 310 | 309 | expr | |- ( ( ph /\ r e. RR+ ) -> ( ( ( B - r ) (,) ( B + r ) ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 311 | 29 310 | sylbid | |- ( ( ph /\ r e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 312 | 311 | rexlimdva | |- ( ph -> ( E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 313 | 20 312 | mpd | |- ( ph -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |