This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncf.1 | |- F = ( x e. A |-> -u x ) |
|
| Assertion | negcncf | |- ( A C_ CC -> F e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncf.1 | |- F = ( x e. A |-> -u x ) |
|
| 2 | neg1cn | |- -u 1 e. CC |
|
| 3 | ssel2 | |- ( ( A C_ CC /\ x e. A ) -> x e. CC ) |
|
| 4 | ovmpot | |- ( ( -u 1 e. CC /\ x e. CC ) -> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) = ( -u 1 x. x ) ) |
|
| 5 | 4 | eqcomd | |- ( ( -u 1 e. CC /\ x e. CC ) -> ( -u 1 x. x ) = ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) |
| 6 | 2 3 5 | sylancr | |- ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) |
| 7 | 3 | mulm1d | |- ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = -u x ) |
| 8 | 6 7 | eqtr3d | |- ( ( A C_ CC /\ x e. A ) -> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) = -u x ) |
| 9 | 8 | mpteq2dva | |- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) = ( x e. A |-> -u x ) ) |
| 10 | 9 1 | eqtr4di | |- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) = F ) |
| 11 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 12 | 11 | mpomulcn | |- ( a e. CC , b e. CC |-> ( a x. b ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 | 12 | a1i | |- ( A C_ CC -> ( a e. CC , b e. CC |-> ( a x. b ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 | ssid | |- CC C_ CC |
|
| 15 | cncfmptc | |- ( ( -u 1 e. CC /\ A C_ CC /\ CC C_ CC ) -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
|
| 16 | 2 14 15 | mp3an13 | |- ( A C_ CC -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
| 17 | cncfmptid | |- ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
|
| 18 | 14 17 | mpan2 | |- ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 19 | 11 13 16 18 | cncfmpt2f | |- ( A C_ CC -> ( x e. A |-> ( -u 1 ( a e. CC , b e. CC |-> ( a x. b ) ) x ) ) e. ( A -cn-> CC ) ) |
| 20 | 10 19 | eqeltrrd | |- ( A C_ CC -> F e. ( A -cn-> CC ) ) |