This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooneg | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> -u C e. ( -u B (,) -u A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltneg | |- ( ( A e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> -u C < -u A ) ) |
| 3 | ltneg | |- ( ( C e. RR /\ B e. RR ) -> ( C < B <-> -u B < -u C ) ) |
|
| 4 | 3 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) |
| 5 | 4 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < B <-> -u B < -u C ) ) |
| 6 | 2 5 | anbi12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u C < -u A /\ -u B < -u C ) ) ) |
| 7 | 6 | biancomd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < C /\ C < B ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
| 8 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 9 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 10 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 11 | elioo5 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |
|
| 12 | 8 9 10 11 | syl3an | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |
| 13 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 14 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 15 | renegcl | |- ( C e. RR -> -u C e. RR ) |
|
| 16 | rexr | |- ( -u B e. RR -> -u B e. RR* ) |
|
| 17 | rexr | |- ( -u A e. RR -> -u A e. RR* ) |
|
| 18 | rexr | |- ( -u C e. RR -> -u C e. RR* ) |
|
| 19 | elioo5 | |- ( ( -u B e. RR* /\ -u A e. RR* /\ -u C e. RR* ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
|
| 20 | 16 17 18 19 | syl3an | |- ( ( -u B e. RR /\ -u A e. RR /\ -u C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
| 21 | 13 14 15 20 | syl3an | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
| 22 | 21 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -u C e. ( -u B (,) -u A ) <-> ( -u B < -u C /\ -u C < -u A ) ) ) |
| 23 | 7 12 22 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C e. ( A (,) B ) <-> -u C e. ( -u B (,) -u A ) ) ) |