This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rational numbers are dense in RR* : any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qbtwnxr | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 3 | qbtwnre | |- ( ( A e. RR /\ B e. RR /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
|
| 4 | 3 | 3expia | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 5 | simpl | |- ( ( A e. RR /\ B = +oo ) -> A e. RR ) |
|
| 6 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 7 | 6 | adantr | |- ( ( A e. RR /\ B = +oo ) -> ( A + 1 ) e. RR ) |
| 8 | ltp1 | |- ( A e. RR -> A < ( A + 1 ) ) |
|
| 9 | 8 | adantr | |- ( ( A e. RR /\ B = +oo ) -> A < ( A + 1 ) ) |
| 10 | qbtwnre | |- ( ( A e. RR /\ ( A + 1 ) e. RR /\ A < ( A + 1 ) ) -> E. x e. QQ ( A < x /\ x < ( A + 1 ) ) ) |
|
| 11 | 5 7 9 10 | syl3anc | |- ( ( A e. RR /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < ( A + 1 ) ) ) |
| 12 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 13 | 12 | ltpnfd | |- ( x e. QQ -> x < +oo ) |
| 14 | 13 | adantl | |- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> x < +oo ) |
| 15 | simplr | |- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> B = +oo ) |
|
| 16 | 14 15 | breqtrrd | |- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> x < B ) |
| 17 | 16 | a1d | |- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> ( x < ( A + 1 ) -> x < B ) ) |
| 18 | 17 | anim2d | |- ( ( ( A e. RR /\ B = +oo ) /\ x e. QQ ) -> ( ( A < x /\ x < ( A + 1 ) ) -> ( A < x /\ x < B ) ) ) |
| 19 | 18 | reximdva | |- ( ( A e. RR /\ B = +oo ) -> ( E. x e. QQ ( A < x /\ x < ( A + 1 ) ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 20 | 11 19 | mpd | |- ( ( A e. RR /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 21 | 20 | a1d | |- ( ( A e. RR /\ B = +oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 22 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 23 | breq2 | |- ( B = -oo -> ( A < B <-> A < -oo ) ) |
|
| 24 | 23 | adantl | |- ( ( A e. RR* /\ B = -oo ) -> ( A < B <-> A < -oo ) ) |
| 25 | nltmnf | |- ( A e. RR* -> -. A < -oo ) |
|
| 26 | 25 | adantr | |- ( ( A e. RR* /\ B = -oo ) -> -. A < -oo ) |
| 27 | 26 | pm2.21d | |- ( ( A e. RR* /\ B = -oo ) -> ( A < -oo -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 28 | 24 27 | sylbid | |- ( ( A e. RR* /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 29 | 22 28 | sylan | |- ( ( A e. RR /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 30 | 4 21 29 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 31 | 2 30 | sylan2b | |- ( ( A e. RR /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 32 | breq1 | |- ( A = +oo -> ( A < B <-> +oo < B ) ) |
|
| 33 | 32 | adantr | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B <-> +oo < B ) ) |
| 34 | pnfnlt | |- ( B e. RR* -> -. +oo < B ) |
|
| 35 | 34 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> -. +oo < B ) |
| 36 | 35 | pm2.21d | |- ( ( A = +oo /\ B e. RR* ) -> ( +oo < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 37 | 33 36 | sylbid | |- ( ( A = +oo /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 38 | peano2rem | |- ( B e. RR -> ( B - 1 ) e. RR ) |
|
| 39 | 38 | adantl | |- ( ( A = -oo /\ B e. RR ) -> ( B - 1 ) e. RR ) |
| 40 | simpr | |- ( ( A = -oo /\ B e. RR ) -> B e. RR ) |
|
| 41 | ltm1 | |- ( B e. RR -> ( B - 1 ) < B ) |
|
| 42 | 41 | adantl | |- ( ( A = -oo /\ B e. RR ) -> ( B - 1 ) < B ) |
| 43 | qbtwnre | |- ( ( ( B - 1 ) e. RR /\ B e. RR /\ ( B - 1 ) < B ) -> E. x e. QQ ( ( B - 1 ) < x /\ x < B ) ) |
|
| 44 | 39 40 42 43 | syl3anc | |- ( ( A = -oo /\ B e. RR ) -> E. x e. QQ ( ( B - 1 ) < x /\ x < B ) ) |
| 45 | simpll | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> A = -oo ) |
|
| 46 | 12 | adantl | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> x e. RR ) |
| 47 | 46 | mnfltd | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> -oo < x ) |
| 48 | 45 47 | eqbrtrd | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> A < x ) |
| 49 | 48 | a1d | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> ( ( B - 1 ) < x -> A < x ) ) |
| 50 | 49 | anim1d | |- ( ( ( A = -oo /\ B e. RR ) /\ x e. QQ ) -> ( ( ( B - 1 ) < x /\ x < B ) -> ( A < x /\ x < B ) ) ) |
| 51 | 50 | reximdva | |- ( ( A = -oo /\ B e. RR ) -> ( E. x e. QQ ( ( B - 1 ) < x /\ x < B ) -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 52 | 44 51 | mpd | |- ( ( A = -oo /\ B e. RR ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 53 | 52 | a1d | |- ( ( A = -oo /\ B e. RR ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 54 | 1re | |- 1 e. RR |
|
| 55 | mnflt | |- ( 1 e. RR -> -oo < 1 ) |
|
| 56 | 54 55 | ax-mp | |- -oo < 1 |
| 57 | breq1 | |- ( A = -oo -> ( A < 1 <-> -oo < 1 ) ) |
|
| 58 | 56 57 | mpbiri | |- ( A = -oo -> A < 1 ) |
| 59 | ltpnf | |- ( 1 e. RR -> 1 < +oo ) |
|
| 60 | 54 59 | ax-mp | |- 1 < +oo |
| 61 | breq2 | |- ( B = +oo -> ( 1 < B <-> 1 < +oo ) ) |
|
| 62 | 60 61 | mpbiri | |- ( B = +oo -> 1 < B ) |
| 63 | 1z | |- 1 e. ZZ |
|
| 64 | zq | |- ( 1 e. ZZ -> 1 e. QQ ) |
|
| 65 | 63 64 | ax-mp | |- 1 e. QQ |
| 66 | breq2 | |- ( x = 1 -> ( A < x <-> A < 1 ) ) |
|
| 67 | breq1 | |- ( x = 1 -> ( x < B <-> 1 < B ) ) |
|
| 68 | 66 67 | anbi12d | |- ( x = 1 -> ( ( A < x /\ x < B ) <-> ( A < 1 /\ 1 < B ) ) ) |
| 69 | 68 | rspcev | |- ( ( 1 e. QQ /\ ( A < 1 /\ 1 < B ) ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 70 | 65 69 | mpan | |- ( ( A < 1 /\ 1 < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 71 | 58 62 70 | syl2an | |- ( ( A = -oo /\ B = +oo ) -> E. x e. QQ ( A < x /\ x < B ) ) |
| 72 | 71 | a1d | |- ( ( A = -oo /\ B = +oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 73 | 3mix3 | |- ( A = -oo -> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 74 | 73 1 | sylibr | |- ( A = -oo -> A e. RR* ) |
| 75 | 74 28 | sylan | |- ( ( A = -oo /\ B = -oo ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 76 | 53 72 75 | 3jaodan | |- ( ( A = -oo /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 77 | 2 76 | sylan2b | |- ( ( A = -oo /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 78 | 31 37 77 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 79 | 1 78 | sylanb | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> E. x e. QQ ( A < x /\ x < B ) ) ) |
| 80 | 79 | 3impia | |- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. x e. QQ ( A < x /\ x < B ) ) |