This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer ordering relation. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zltp1le | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1 | |- ( ( N - M ) e. NN -> 1 <_ ( N - M ) ) |
|
| 2 | 1 | a1i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N - M ) e. NN -> 1 <_ ( N - M ) ) ) |
| 3 | znnsub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) ) |
|
| 4 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 5 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 6 | 1re | |- 1 e. RR |
|
| 7 | leaddsub2 | |- ( ( M e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( M + 1 ) <_ N <-> 1 <_ ( N - M ) ) ) |
|
| 8 | 6 7 | mp3an2 | |- ( ( M e. RR /\ N e. RR ) -> ( ( M + 1 ) <_ N <-> 1 <_ ( N - M ) ) ) |
| 9 | 4 5 8 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + 1 ) <_ N <-> 1 <_ ( N - M ) ) ) |
| 10 | 2 3 9 | 3imtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N -> ( M + 1 ) <_ N ) ) |
| 11 | 4 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. RR ) |
| 12 | 11 | ltp1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> M < ( M + 1 ) ) |
| 13 | peano2re | |- ( M e. RR -> ( M + 1 ) e. RR ) |
|
| 14 | 11 13 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + 1 ) e. RR ) |
| 15 | 5 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. RR ) |
| 16 | ltletr | |- ( ( M e. RR /\ ( M + 1 ) e. RR /\ N e. RR ) -> ( ( M < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> M < N ) ) |
|
| 17 | 11 14 15 16 | syl3anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> M < N ) ) |
| 18 | 12 17 | mpand | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + 1 ) <_ N -> M < N ) ) |
| 19 | 10 18 | impbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |