This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uztric | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 3 | letric | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N \/ N <_ M ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N \/ N <_ M ) ) |
| 5 | eluz | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
|
| 6 | eluz | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( M e. ( ZZ>= ` N ) <-> N <_ M ) ) |
|
| 7 | 6 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( ZZ>= ` N ) <-> N <_ M ) ) |
| 8 | 5 7 | orbi12d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) <-> ( M <_ N \/ N <_ M ) ) ) |
| 9 | 4 8 | mpbird | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) ) |