This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . (Contributed by NM, 6-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2.1 | |- Z = ( ZZ>= ` M ) |
|
| clim2.2 | |- ( ph -> M e. ZZ ) |
||
| clim2.3 | |- ( ph -> F e. V ) |
||
| clim2.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
| Assertion | clim2 | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | clim2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | clim2.3 | |- ( ph -> F e. V ) |
|
| 4 | clim2.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
| 5 | eqidd | |- ( ( ph /\ k e. ZZ ) -> ( F ` k ) = ( F ` k ) ) |
|
| 6 | 3 5 | clim | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 7 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 8 | 4 | eleq1d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) e. CC <-> B e. CC ) ) |
| 9 | 4 | fvoveq1d | |- ( ( ph /\ k e. Z ) -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( B - A ) ) ) |
| 10 | 9 | breq1d | |- ( ( ph /\ k e. Z ) -> ( ( abs ` ( ( F ` k ) - A ) ) < x <-> ( abs ` ( B - A ) ) < x ) ) |
| 11 | 8 10 | anbi12d | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 12 | 7 11 | sylan2 | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 13 | 12 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 14 | 13 | ralbidva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 15 | 14 | rexbidva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 16 | 1 | rexuz3 | |- ( M e. ZZ -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 17 | 2 16 | syl | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 18 | 15 17 | bitr3d | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 19 | 18 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) |
| 20 | 19 | anbi2d | |- ( ph -> ( ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( F ` k ) e. CC /\ ( abs ` ( ( F ` k ) - A ) ) < x ) ) ) ) |
| 21 | 6 20 | bitr4d | |- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |