This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznn | |- ( N e. ZZ -> ( K e. ( 1 ... N ) <-> ( K e. NN /\ K <_ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb | |- ( K e. ( 1 ... N ) <-> ( K e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` K ) ) ) |
|
| 2 | elnnuz | |- ( K e. NN <-> K e. ( ZZ>= ` 1 ) ) |
|
| 3 | 2 | anbi1i | |- ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) <-> ( K e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` K ) ) ) |
| 4 | 1 3 | bitr4i | |- ( K e. ( 1 ... N ) <-> ( K e. NN /\ N e. ( ZZ>= ` K ) ) ) |
| 5 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 6 | eluz | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` K ) <-> K <_ N ) ) |
|
| 7 | 5 6 | sylan | |- ( ( K e. NN /\ N e. ZZ ) -> ( N e. ( ZZ>= ` K ) <-> K <_ N ) ) |
| 8 | 7 | ancoms | |- ( ( N e. ZZ /\ K e. NN ) -> ( N e. ( ZZ>= ` K ) <-> K <_ N ) ) |
| 9 | 8 | pm5.32da | |- ( N e. ZZ -> ( ( K e. NN /\ N e. ( ZZ>= ` K ) ) <-> ( K e. NN /\ K <_ N ) ) ) |
| 10 | 4 9 | bitrid | |- ( N e. ZZ -> ( K e. ( 1 ... N ) <-> ( K e. NN /\ K <_ N ) ) ) |