This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| isercoll.m | |- ( ph -> M e. ZZ ) |
||
| isercoll.g | |- ( ph -> G : NN --> Z ) |
||
| isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
||
| isercoll.0 | |- ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
||
| isercoll.f | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
||
| isercoll.h | |- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
||
| Assertion | isercolllem3 | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` N ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | isercoll.m | |- ( ph -> M e. ZZ ) |
|
| 3 | isercoll.g | |- ( ph -> G : NN --> Z ) |
|
| 4 | isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
|
| 5 | isercoll.0 | |- ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
|
| 6 | isercoll.f | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
|
| 7 | isercoll.h | |- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
|
| 8 | addlid | |- ( n e. CC -> ( 0 + n ) = n ) |
|
| 9 | 8 | adantl | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. CC ) -> ( 0 + n ) = n ) |
| 10 | addrid | |- ( n e. CC -> ( n + 0 ) = n ) |
|
| 11 | 10 | adantl | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. CC ) -> ( n + 0 ) = n ) |
| 12 | addcl | |- ( ( n e. CC /\ k e. CC ) -> ( n + k ) e. CC ) |
|
| 13 | 12 | adantl | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ ( n e. CC /\ k e. CC ) ) -> ( n + k ) e. CC ) |
| 14 | 0cnd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 0 e. CC ) |
|
| 15 | cnvimass | |- ( `' G " ( M ... N ) ) C_ dom G |
|
| 16 | 3 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN --> Z ) |
| 17 | 15 16 | fssdm | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ NN ) |
| 18 | 1 2 3 4 | isercolllem1 | |- ( ( ph /\ ( `' G " ( M ... N ) ) C_ NN ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 19 | 17 18 | syldan | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 20 | 1 2 3 4 | isercolllem2 | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) ) |
| 21 | isoeq4 | |- ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) <-> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) <-> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( `' G " ( M ... N ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) ) |
| 23 | 19 22 | mpbird | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G |` ( `' G " ( M ... N ) ) ) Isom < , < ( ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) , ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 24 | 15 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ dom G ) |
| 25 | sseqin2 | |- ( ( `' G " ( M ... N ) ) C_ dom G <-> ( dom G i^i ( `' G " ( M ... N ) ) ) = ( `' G " ( M ... N ) ) ) |
|
| 26 | 24 25 | sylib | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( dom G i^i ( `' G " ( M ... N ) ) ) = ( `' G " ( M ... N ) ) ) |
| 27 | 1nn | |- 1 e. NN |
|
| 28 | 27 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. NN ) |
| 29 | ffvelcdm | |- ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) |
|
| 30 | 3 27 29 | sylancl | |- ( ph -> ( G ` 1 ) e. Z ) |
| 31 | 30 1 | eleqtrdi | |- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 33 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> N e. ( ZZ>= ` ( G ` 1 ) ) ) |
|
| 34 | elfzuzb | |- ( ( G ` 1 ) e. ( M ... N ) <-> ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) ) |
|
| 35 | 32 33 34 | sylanbrc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( M ... N ) ) |
| 36 | ffn | |- ( G : NN --> Z -> G Fn NN ) |
|
| 37 | elpreima | |- ( G Fn NN -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) |
|
| 38 | 16 36 37 | 3syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) |
| 39 | 28 35 38 | mpbir2and | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. ( `' G " ( M ... N ) ) ) |
| 40 | 39 | ne0d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) =/= (/) ) |
| 41 | 26 40 | eqnetrd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( dom G i^i ( `' G " ( M ... N ) ) ) =/= (/) ) |
| 42 | imadisj | |- ( ( G " ( `' G " ( M ... N ) ) ) = (/) <-> ( dom G i^i ( `' G " ( M ... N ) ) ) = (/) ) |
|
| 43 | 42 | necon3bii | |- ( ( G " ( `' G " ( M ... N ) ) ) =/= (/) <-> ( dom G i^i ( `' G " ( M ... N ) ) ) =/= (/) ) |
| 44 | 41 43 | sylibr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) =/= (/) ) |
| 45 | ffun | |- ( G : NN --> Z -> Fun G ) |
|
| 46 | funimacnv | |- ( Fun G -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) |
|
| 47 | 16 45 46 | 3syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) |
| 48 | inss1 | |- ( ( M ... N ) i^i ran G ) C_ ( M ... N ) |
|
| 49 | 47 48 | eqsstrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) C_ ( M ... N ) ) |
| 50 | simpl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ph ) |
|
| 51 | elfzuz | |- ( n e. ( M ... N ) -> n e. ( ZZ>= ` M ) ) |
|
| 52 | 51 1 | eleqtrrdi | |- ( n e. ( M ... N ) -> n e. Z ) |
| 53 | 50 52 6 | syl2an | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( M ... N ) ) -> ( F ` n ) e. CC ) |
| 54 | 47 | difeq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) = ( ( M ... N ) \ ( ( M ... N ) i^i ran G ) ) ) |
| 55 | difin | |- ( ( M ... N ) \ ( ( M ... N ) i^i ran G ) ) = ( ( M ... N ) \ ran G ) |
|
| 56 | 54 55 | eqtrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) = ( ( M ... N ) \ ran G ) ) |
| 57 | 52 | ssriv | |- ( M ... N ) C_ Z |
| 58 | ssdif | |- ( ( M ... N ) C_ Z -> ( ( M ... N ) \ ran G ) C_ ( Z \ ran G ) ) |
|
| 59 | 57 58 | mp1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ran G ) C_ ( Z \ ran G ) ) |
| 60 | 56 59 | eqsstrd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) C_ ( Z \ ran G ) ) |
| 61 | 60 | sselda | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) ) -> n e. ( Z \ ran G ) ) |
| 62 | 5 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
| 63 | 61 62 | syldan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ n e. ( ( M ... N ) \ ( G " ( `' G " ( M ... N ) ) ) ) ) -> ( F ` n ) = 0 ) |
| 64 | elfznn | |- ( k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) -> k e. NN ) |
|
| 65 | 50 64 7 | syl2an | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
| 66 | 20 | eleq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) <-> k e. ( `' G " ( M ... N ) ) ) ) |
| 67 | 66 | biimpa | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> k e. ( `' G " ( M ... N ) ) ) |
| 68 | 67 | fvresd | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) = ( G ` k ) ) |
| 69 | 68 | fveq2d | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( F ` ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) ) = ( F ` ( G ` k ) ) ) |
| 70 | 65 69 | eqtr4d | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) -> ( H ` k ) = ( F ` ( ( G |` ( `' G " ( M ... N ) ) ) ` k ) ) ) |
| 71 | 9 11 13 14 23 44 49 53 63 70 | seqcoll2 | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` N ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) |