This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A <_ B < ~P A , and A is an infinite GCH-set, then A = B in cardinality. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchen1 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~<_ B ) |
|
| 2 | gchi | |- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
|
| 3 | 2 | 3com23 | |- ( ( A e. GCH /\ B ~< ~P A /\ A ~< B ) -> A e. Fin ) |
| 4 | 3 | 3expia | |- ( ( A e. GCH /\ B ~< ~P A ) -> ( A ~< B -> A e. Fin ) ) |
| 5 | 4 | con3dimp | |- ( ( ( A e. GCH /\ B ~< ~P A ) /\ -. A e. Fin ) -> -. A ~< B ) |
| 6 | 5 | an32s | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ B ~< ~P A ) -> -. A ~< B ) |
| 7 | 6 | adantrl | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> -. A ~< B ) |
| 8 | bren2 | |- ( A ~~ B <-> ( A ~<_ B /\ -. A ~< B ) ) |
|
| 9 | 1 7 8 | sylanbrc | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) |