This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuen | |- ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | relen | |- Rel ~~ |
|
| 3 | 2 | brrelex1i | |- ( A ~~ B -> A e. _V ) |
| 4 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 5 | 1 3 4 | sylancr | |- ( A ~~ B -> ( { (/) } X. A ) ~~ A ) |
| 6 | 2 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 7 | xpsnen2g | |- ( ( (/) e. _V /\ B e. _V ) -> ( { (/) } X. B ) ~~ B ) |
|
| 8 | 1 6 7 | sylancr | |- ( A ~~ B -> ( { (/) } X. B ) ~~ B ) |
| 9 | 8 | ensymd | |- ( A ~~ B -> B ~~ ( { (/) } X. B ) ) |
| 10 | entr | |- ( ( A ~~ B /\ B ~~ ( { (/) } X. B ) ) -> A ~~ ( { (/) } X. B ) ) |
|
| 11 | 9 10 | mpdan | |- ( A ~~ B -> A ~~ ( { (/) } X. B ) ) |
| 12 | entr | |- ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( { (/) } X. B ) ) -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) |
|
| 13 | 5 11 12 | syl2anc | |- ( A ~~ B -> ( { (/) } X. A ) ~~ ( { (/) } X. B ) ) |
| 14 | 1on | |- 1o e. On |
|
| 15 | 2 | brrelex1i | |- ( C ~~ D -> C e. _V ) |
| 16 | xpsnen2g | |- ( ( 1o e. On /\ C e. _V ) -> ( { 1o } X. C ) ~~ C ) |
|
| 17 | 14 15 16 | sylancr | |- ( C ~~ D -> ( { 1o } X. C ) ~~ C ) |
| 18 | 2 | brrelex2i | |- ( C ~~ D -> D e. _V ) |
| 19 | xpsnen2g | |- ( ( 1o e. On /\ D e. _V ) -> ( { 1o } X. D ) ~~ D ) |
|
| 20 | 14 18 19 | sylancr | |- ( C ~~ D -> ( { 1o } X. D ) ~~ D ) |
| 21 | 20 | ensymd | |- ( C ~~ D -> D ~~ ( { 1o } X. D ) ) |
| 22 | entr | |- ( ( C ~~ D /\ D ~~ ( { 1o } X. D ) ) -> C ~~ ( { 1o } X. D ) ) |
|
| 23 | 21 22 | mpdan | |- ( C ~~ D -> C ~~ ( { 1o } X. D ) ) |
| 24 | entr | |- ( ( ( { 1o } X. C ) ~~ C /\ C ~~ ( { 1o } X. D ) ) -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) |
|
| 25 | 17 23 24 | syl2anc | |- ( C ~~ D -> ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) |
| 26 | xp01disjl | |- ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) |
|
| 27 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) |
|
| 28 | unen | |- ( ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) /\ ( ( ( { (/) } X. A ) i^i ( { 1o } X. C ) ) = (/) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. D ) ) = (/) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
|
| 29 | 26 27 28 | mpanr12 | |- ( ( ( { (/) } X. A ) ~~ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~~ ( { 1o } X. D ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
| 30 | 13 25 29 | syl2an | |- ( ( A ~~ B /\ C ~~ D ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~~ ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) ) |
| 31 | df-dju | |- ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) |
|
| 32 | df-dju | |- ( B |_| D ) = ( ( { (/) } X. B ) u. ( { 1o } X. D ) ) |
|
| 33 | 30 31 32 | 3brtr4g | |- ( ( A ~~ B /\ C ~~ D ) -> ( A |_| C ) ~~ ( B |_| D ) ) |