This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 24-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djucomen | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( B |_| A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex | |- 1o e. _V |
|
| 2 | xpsnen2g | |- ( ( 1o e. _V /\ A e. V ) -> ( { 1o } X. A ) ~~ A ) |
|
| 3 | 1 2 | mpan | |- ( A e. V -> ( { 1o } X. A ) ~~ A ) |
| 4 | 0ex | |- (/) e. _V |
|
| 5 | xpsnen2g | |- ( ( (/) e. _V /\ B e. W ) -> ( { (/) } X. B ) ~~ B ) |
|
| 6 | 4 5 | mpan | |- ( B e. W -> ( { (/) } X. B ) ~~ B ) |
| 7 | ensym | |- ( ( { 1o } X. A ) ~~ A -> A ~~ ( { 1o } X. A ) ) |
|
| 8 | ensym | |- ( ( { (/) } X. B ) ~~ B -> B ~~ ( { (/) } X. B ) ) |
|
| 9 | incom | |- ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) |
|
| 10 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. A ) ) = (/) |
|
| 11 | 9 10 | eqtri | |- ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) |
| 12 | djuenun | |- ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) /\ ( ( { 1o } X. A ) i^i ( { (/) } X. B ) ) = (/) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
|
| 13 | 11 12 | mp3an3 | |- ( ( A ~~ ( { 1o } X. A ) /\ B ~~ ( { (/) } X. B ) ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
| 14 | 7 8 13 | syl2an | |- ( ( ( { 1o } X. A ) ~~ A /\ ( { (/) } X. B ) ~~ B ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
| 15 | 3 6 14 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) ) |
| 16 | df-dju | |- ( B |_| A ) = ( ( { (/) } X. B ) u. ( { 1o } X. A ) ) |
|
| 17 | 16 | equncomi | |- ( B |_| A ) = ( ( { 1o } X. A ) u. ( { (/) } X. B ) ) |
| 18 | 15 17 | breqtrrdi | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) ~~ ( B |_| A ) ) |