This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdompwdom | |- ( X ~<_* Y -> ~P X ~<_ ~P Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwdom | |- Rel ~<_* |
|
| 2 | 1 | brrelex2i | |- ( X ~<_* Y -> Y e. _V ) |
| 3 | 2 | pwexd | |- ( X ~<_* Y -> ~P Y e. _V ) |
| 4 | 0ss | |- (/) C_ Y |
|
| 5 | 4 | sspwi | |- ~P (/) C_ ~P Y |
| 6 | ssdomg | |- ( ~P Y e. _V -> ( ~P (/) C_ ~P Y -> ~P (/) ~<_ ~P Y ) ) |
|
| 7 | 3 5 6 | mpisyl | |- ( X ~<_* Y -> ~P (/) ~<_ ~P Y ) |
| 8 | pweq | |- ( X = (/) -> ~P X = ~P (/) ) |
|
| 9 | 8 | breq1d | |- ( X = (/) -> ( ~P X ~<_ ~P Y <-> ~P (/) ~<_ ~P Y ) ) |
| 10 | 7 9 | imbitrrid | |- ( X = (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) |
| 11 | brwdomn0 | |- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
|
| 12 | vex | |- z e. _V |
|
| 13 | fopwdom | |- ( ( z e. _V /\ z : Y -onto-> X ) -> ~P X ~<_ ~P Y ) |
|
| 14 | 12 13 | mpan | |- ( z : Y -onto-> X -> ~P X ~<_ ~P Y ) |
| 15 | 14 | exlimiv | |- ( E. z z : Y -onto-> X -> ~P X ~<_ ~P Y ) |
| 16 | 11 15 | biimtrdi | |- ( X =/= (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) |
| 17 | 10 16 | pm2.61ine | |- ( X ~<_* Y -> ~P X ~<_ ~P Y ) |