This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A property of dominance over a powerset, and a main lemma for gchac . Similar to Lemma 2.3 of KanamoriPincus p. 420. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdjudom | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthwdom | |- -. ~P A ~<_* A |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex2i | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( A |_| B ) e. _V ) |
| 5 | djuexb | |- ( ( A e. _V /\ B e. _V ) <-> ( A |_| B ) e. _V ) |
|
| 6 | 4 5 | sylibr | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( A e. _V /\ B e. _V ) ) |
| 7 | 6 | simpld | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> A e. _V ) |
| 8 | xpsnen2g | |- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
|
| 9 | 2 7 8 | sylancr | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( { (/) } X. A ) ~~ A ) |
| 10 | endom | |- ( ( { (/) } X. A ) ~~ A -> ( { (/) } X. A ) ~<_ A ) |
|
| 11 | domwdom | |- ( ( { (/) } X. A ) ~<_ A -> ( { (/) } X. A ) ~<_* A ) |
|
| 12 | wdomtr | |- ( ( ~P A ~<_* ( { (/) } X. A ) /\ ( { (/) } X. A ) ~<_* A ) -> ~P A ~<_* A ) |
|
| 13 | 12 | expcom | |- ( ( { (/) } X. A ) ~<_* A -> ( ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_* A ) ) |
| 14 | 9 10 11 13 | 4syl | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_* A ) ) |
| 15 | 1 14 | mtoi | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> -. ~P A ~<_* ( { (/) } X. A ) ) |
| 16 | pwdjuen | |- ( ( A e. _V /\ A e. _V ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
|
| 17 | 7 7 16 | syl2anc | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
| 18 | domen1 | |- ( ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) -> ( ~P ( A |_| A ) ~<_ ( A |_| B ) <-> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) ) |
|
| 19 | 17 18 | syl | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P ( A |_| A ) ~<_ ( A |_| B ) <-> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) ) |
| 20 | 19 | ibi | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A X. ~P A ) ~<_ ( A |_| B ) ) |
| 21 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 22 | 20 21 | breqtrdi | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A X. ~P A ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 23 | unxpwdom | |- ( ( ~P A X. ~P A ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) -> ( ~P A ~<_* ( { (/) } X. A ) \/ ~P A ~<_ ( { 1o } X. B ) ) ) |
|
| 24 | 22 23 | syl | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( ~P A ~<_* ( { (/) } X. A ) \/ ~P A ~<_ ( { 1o } X. B ) ) ) |
| 25 | 24 | ord | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( -. ~P A ~<_* ( { (/) } X. A ) -> ~P A ~<_ ( { 1o } X. B ) ) ) |
| 26 | 15 25 | mpd | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ ( { 1o } X. B ) ) |
| 27 | 1on | |- 1o e. On |
|
| 28 | 6 | simprd | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> B e. _V ) |
| 29 | xpsnen2g | |- ( ( 1o e. On /\ B e. _V ) -> ( { 1o } X. B ) ~~ B ) |
|
| 30 | 27 28 29 | sylancr | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ( { 1o } X. B ) ~~ B ) |
| 31 | domentr | |- ( ( ~P A ~<_ ( { 1o } X. B ) /\ ( { 1o } X. B ) ~~ B ) -> ~P A ~<_ B ) |
|
| 32 | 26 30 31 | syl2anc | |- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ B ) |