This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchxpidm | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | 1 | a1i | |- ( -. A e. Fin -> (/) e. _V ) |
| 3 | xpsneng | |- ( ( A e. GCH /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. { (/) } ) ~~ A ) |
| 5 | 4 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A X. { (/) } ) ) |
| 6 | df1o2 | |- 1o = { (/) } |
|
| 7 | id | |- ( A = (/) -> A = (/) ) |
|
| 8 | 0fi | |- (/) e. Fin |
|
| 9 | 7 8 | eqeltrdi | |- ( A = (/) -> A e. Fin ) |
| 10 | 9 | necon3bi | |- ( -. A e. Fin -> A =/= (/) ) |
| 11 | 10 | adantl | |- ( ( A e. GCH /\ -. A e. Fin ) -> A =/= (/) ) |
| 12 | 0sdomg | |- ( A e. GCH -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 13 | 12 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( (/) ~< A <-> A =/= (/) ) ) |
| 14 | 11 13 | mpbird | |- ( ( A e. GCH /\ -. A e. Fin ) -> (/) ~< A ) |
| 15 | 0sdom1dom | |- ( (/) ~< A <-> 1o ~<_ A ) |
|
| 16 | 14 15 | sylib | |- ( ( A e. GCH /\ -. A e. Fin ) -> 1o ~<_ A ) |
| 17 | 6 16 | eqbrtrrid | |- ( ( A e. GCH /\ -. A e. Fin ) -> { (/) } ~<_ A ) |
| 18 | xpdom2g | |- ( ( A e. GCH /\ { (/) } ~<_ A ) -> ( A X. { (/) } ) ~<_ ( A X. A ) ) |
|
| 19 | 17 18 | syldan | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. { (/) } ) ~<_ ( A X. A ) ) |
| 20 | endomtr | |- ( ( A ~~ ( A X. { (/) } ) /\ ( A X. { (/) } ) ~<_ ( A X. A ) ) -> A ~<_ ( A X. A ) ) |
|
| 21 | 5 19 20 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A X. A ) ) |
| 22 | canth2g | |- ( A e. GCH -> A ~< ~P A ) |
|
| 23 | 22 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~< ~P A ) |
| 24 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
| 25 | 23 24 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ~P A ) |
| 26 | xpdom1g | |- ( ( A e. GCH /\ A ~<_ ~P A ) -> ( A X. A ) ~<_ ( ~P A X. A ) ) |
|
| 27 | 25 26 | syldan | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ( ~P A X. A ) ) |
| 28 | pwexg | |- ( A e. GCH -> ~P A e. _V ) |
|
| 29 | 28 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> ~P A e. _V ) |
| 30 | xpdom2g | |- ( ( ~P A e. _V /\ A ~<_ ~P A ) -> ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) |
|
| 31 | 29 25 30 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) |
| 32 | domtr | |- ( ( ( A X. A ) ~<_ ( ~P A X. A ) /\ ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) -> ( A X. A ) ~<_ ( ~P A X. ~P A ) ) |
|
| 33 | 27 31 32 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ( ~P A X. ~P A ) ) |
| 34 | simpl | |- ( ( A e. GCH /\ -. A e. Fin ) -> A e. GCH ) |
|
| 35 | pwdjuen | |- ( ( A e. GCH /\ A e. GCH ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
|
| 36 | 34 35 | syldan | |- ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) |
| 37 | 36 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. ~P A ) ~~ ~P ( A |_| A ) ) |
| 38 | gchdjuidm | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |
|
| 39 | pwen | |- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
|
| 40 | 38 39 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| A ) ~~ ~P A ) |
| 41 | entr | |- ( ( ( ~P A X. ~P A ) ~~ ~P ( A |_| A ) /\ ~P ( A |_| A ) ~~ ~P A ) -> ( ~P A X. ~P A ) ~~ ~P A ) |
|
| 42 | 37 40 41 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. ~P A ) ~~ ~P A ) |
| 43 | domentr | |- ( ( ( A X. A ) ~<_ ( ~P A X. ~P A ) /\ ( ~P A X. ~P A ) ~~ ~P A ) -> ( A X. A ) ~<_ ~P A ) |
|
| 44 | 33 42 43 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ~P A ) |
| 45 | gchinf | |- ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |
|
| 46 | pwxpndom | |- ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) |
|
| 47 | 45 46 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> -. ~P A ~<_ ( A X. A ) ) |
| 48 | ensym | |- ( ( A X. A ) ~~ ~P A -> ~P A ~~ ( A X. A ) ) |
|
| 49 | endom | |- ( ~P A ~~ ( A X. A ) -> ~P A ~<_ ( A X. A ) ) |
|
| 50 | 48 49 | syl | |- ( ( A X. A ) ~~ ~P A -> ~P A ~<_ ( A X. A ) ) |
| 51 | 47 50 | nsyl | |- ( ( A e. GCH /\ -. A e. Fin ) -> -. ( A X. A ) ~~ ~P A ) |
| 52 | brsdom | |- ( ( A X. A ) ~< ~P A <-> ( ( A X. A ) ~<_ ~P A /\ -. ( A X. A ) ~~ ~P A ) ) |
|
| 53 | 44 51 52 | sylanbrc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~< ~P A ) |
| 54 | 21 53 | jca | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A X. A ) /\ ( A X. A ) ~< ~P A ) ) |
| 55 | gchen1 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A X. A ) /\ ( A X. A ) ~< ~P A ) ) -> A ~~ ( A X. A ) ) |
|
| 56 | 54 55 | mpdan | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A X. A ) ) |
| 57 | 56 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |