This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchdjuidm | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. GCH /\ -. A e. Fin ) -> A e. GCH ) |
|
| 2 | djudoml | |- ( ( A e. GCH /\ A e. GCH ) -> A ~<_ ( A |_| A ) ) |
|
| 3 | 1 1 2 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| A ) ) |
| 4 | canth2g | |- ( A e. GCH -> A ~< ~P A ) |
|
| 5 | 4 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~< ~P A ) |
| 6 | sdomdom | |- ( A ~< ~P A -> A ~<_ ~P A ) |
|
| 7 | 5 6 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ~P A ) |
| 8 | reldom | |- Rel ~<_ |
|
| 9 | 8 | brrelex1i | |- ( A ~<_ ~P A -> A e. _V ) |
| 10 | djudom1 | |- ( ( A ~<_ ~P A /\ A e. _V ) -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) |
|
| 11 | 9 10 | mpdan | |- ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) |
| 12 | 9 | pwexd | |- ( A ~<_ ~P A -> ~P A e. _V ) |
| 13 | djudom2 | |- ( ( A ~<_ ~P A /\ ~P A e. _V ) -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 14 | 12 13 | mpdan | |- ( A ~<_ ~P A -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 15 | domtr | |- ( ( ( A |_| A ) ~<_ ( ~P A |_| A ) /\ ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
|
| 16 | 11 14 15 | syl2anc | |- ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 17 | 7 16 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) |
| 18 | pwdju1 | |- ( A e. GCH -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
|
| 19 | 18 | adantr | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) |
| 20 | gchdju1 | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |
|
| 21 | pwen | |- ( ( A |_| 1o ) ~~ A -> ~P ( A |_| 1o ) ~~ ~P A ) |
|
| 22 | 20 21 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| 1o ) ~~ ~P A ) |
| 23 | entr | |- ( ( ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~~ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
|
| 24 | 19 22 23 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
| 25 | domentr | |- ( ( ( A |_| A ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| A ) ~<_ ~P A ) |
|
| 26 | 17 24 25 | syl2anc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ~P A ) |
| 27 | gchinf | |- ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |
|
| 28 | pwdjundom | |- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) |
|
| 29 | 27 28 | syl | |- ( ( A e. GCH /\ -. A e. Fin ) -> -. ~P A ~<_ ( A |_| A ) ) |
| 30 | ensym | |- ( ( A |_| A ) ~~ ~P A -> ~P A ~~ ( A |_| A ) ) |
|
| 31 | endom | |- ( ~P A ~~ ( A |_| A ) -> ~P A ~<_ ( A |_| A ) ) |
|
| 32 | 30 31 | syl | |- ( ( A |_| A ) ~~ ~P A -> ~P A ~<_ ( A |_| A ) ) |
| 33 | 29 32 | nsyl | |- ( ( A e. GCH /\ -. A e. Fin ) -> -. ( A |_| A ) ~~ ~P A ) |
| 34 | brsdom | |- ( ( A |_| A ) ~< ~P A <-> ( ( A |_| A ) ~<_ ~P A /\ -. ( A |_| A ) ~~ ~P A ) ) |
|
| 35 | 26 33 34 | sylanbrc | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~< ~P A ) |
| 36 | 3 35 | jca | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) |
| 37 | gchen1 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) -> A ~~ ( A |_| A ) ) |
|
| 38 | 36 37 | mpdan | |- ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| A ) ) |
| 39 | 38 | ensymd | |- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |