This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance relation, meaning " B is strictly greater in size than A ". Definition of Mendelson p. 255. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brsdom | |- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdom | |- ~< = ( ~<_ \ ~~ ) |
|
| 2 | 1 | eleq2i | |- ( <. A , B >. e. ~< <-> <. A , B >. e. ( ~<_ \ ~~ ) ) |
| 3 | df-br | |- ( A ~< B <-> <. A , B >. e. ~< ) |
|
| 4 | df-br | |- ( A ~<_ B <-> <. A , B >. e. ~<_ ) |
|
| 5 | df-br | |- ( A ~~ B <-> <. A , B >. e. ~~ ) |
|
| 6 | 5 | notbii | |- ( -. A ~~ B <-> -. <. A , B >. e. ~~ ) |
| 7 | 4 6 | anbi12i | |- ( ( A ~<_ B /\ -. A ~~ B ) <-> ( <. A , B >. e. ~<_ /\ -. <. A , B >. e. ~~ ) ) |
| 8 | eldif | |- ( <. A , B >. e. ( ~<_ \ ~~ ) <-> ( <. A , B >. e. ~<_ /\ -. <. A , B >. e. ~~ ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( A ~<_ B /\ -. A ~~ B ) <-> <. A , B >. e. ( ~<_ \ ~~ ) ) |
| 10 | 2 3 9 | 3bitr4i | |- ( A ~< B <-> ( A ~<_ B /\ -. A ~~ B ) ) |