This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom2g | |- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | |- ( x = C -> ( x X. A ) = ( C X. A ) ) |
|
| 2 | xpeq1 | |- ( x = C -> ( x X. B ) = ( C X. B ) ) |
|
| 3 | 1 2 | breq12d | |- ( x = C -> ( ( x X. A ) ~<_ ( x X. B ) <-> ( C X. A ) ~<_ ( C X. B ) ) ) |
| 4 | 3 | imbi2d | |- ( x = C -> ( ( A ~<_ B -> ( x X. A ) ~<_ ( x X. B ) ) <-> ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) ) ) |
| 5 | vex | |- x e. _V |
|
| 6 | 5 | xpdom2 | |- ( A ~<_ B -> ( x X. A ) ~<_ ( x X. B ) ) |
| 7 | 4 6 | vtoclg | |- ( C e. V -> ( A ~<_ B -> ( C X. A ) ~<_ ( C X. B ) ) ) |
| 8 | 7 | imp | |- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( C X. B ) ) |