This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A < B <_ ~P A , and A is an infinite GCH-set, then B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchen2 | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~~ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~<_ ~P A ) |
|
| 2 | gchi | |- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
|
| 3 | 2 | 3expia | |- ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
| 4 | 3 | con3dimp | |- ( ( ( A e. GCH /\ A ~< B ) /\ -. A e. Fin ) -> -. B ~< ~P A ) |
| 5 | 4 | an32s | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ A ~< B ) -> -. B ~< ~P A ) |
| 6 | 5 | adantrr | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> -. B ~< ~P A ) |
| 7 | bren2 | |- ( B ~~ ~P A <-> ( B ~<_ ~P A /\ -. B ~< ~P A ) ) |
|
| 8 | 1 6 7 | sylanbrc | |- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~~ ~P A ) |