This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for cardinal addition. Theorem 6L(a) of Enderton p. 149. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudom2 | |- ( ( A ~<_ B /\ C e. V ) -> ( C |_| A ) ~<_ ( C |_| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djudom1 | |- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 4 | djucomen | |- ( ( A e. _V /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
|
| 5 | 3 4 | sylan | |- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~~ ( C |_| A ) ) |
| 6 | 2 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 7 | djucomen | |- ( ( B e. _V /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
|
| 8 | 6 7 | sylan | |- ( ( A ~<_ B /\ C e. V ) -> ( B |_| C ) ~~ ( C |_| B ) ) |
| 9 | domen1 | |- ( ( A |_| C ) ~~ ( C |_| A ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( B |_| C ) ) ) |
|
| 10 | domen2 | |- ( ( B |_| C ) ~~ ( C |_| B ) -> ( ( C |_| A ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
|
| 11 | 9 10 | sylan9bb | |- ( ( ( A |_| C ) ~~ ( C |_| A ) /\ ( B |_| C ) ~~ ( C |_| B ) ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
| 12 | 5 8 11 | syl2anc | |- ( ( A ~<_ B /\ C e. V ) -> ( ( A |_| C ) ~<_ ( B |_| C ) <-> ( C |_| A ) ~<_ ( C |_| B ) ) ) |
| 13 | 1 12 | mpbid | |- ( ( A ~<_ B /\ C e. V ) -> ( C |_| A ) ~<_ ( C |_| B ) ) |