This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of TakeutiZaring p. 87. (Contributed by NM, 29-Jan-2004) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwen | |- ( A ~~ B -> ~P A ~~ ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen | |- Rel ~~ |
|
| 2 | 1 | brrelex1i | |- ( A ~~ B -> A e. _V ) |
| 3 | pw2eng | |- ( A e. _V -> ~P A ~~ ( 2o ^m A ) ) |
|
| 4 | 2 3 | syl | |- ( A ~~ B -> ~P A ~~ ( 2o ^m A ) ) |
| 5 | 2onn | |- 2o e. _om |
|
| 6 | 5 | elexi | |- 2o e. _V |
| 7 | 6 | enref | |- 2o ~~ 2o |
| 8 | mapen | |- ( ( 2o ~~ 2o /\ A ~~ B ) -> ( 2o ^m A ) ~~ ( 2o ^m B ) ) |
|
| 9 | 7 8 | mpan | |- ( A ~~ B -> ( 2o ^m A ) ~~ ( 2o ^m B ) ) |
| 10 | 1 | brrelex2i | |- ( A ~~ B -> B e. _V ) |
| 11 | pw2eng | |- ( B e. _V -> ~P B ~~ ( 2o ^m B ) ) |
|
| 12 | ensym | |- ( ~P B ~~ ( 2o ^m B ) -> ( 2o ^m B ) ~~ ~P B ) |
|
| 13 | 10 11 12 | 3syl | |- ( A ~~ B -> ( 2o ^m B ) ~~ ~P B ) |
| 14 | entr | |- ( ( ( 2o ^m A ) ~~ ( 2o ^m B ) /\ ( 2o ^m B ) ~~ ~P B ) -> ( 2o ^m A ) ~~ ~P B ) |
|
| 15 | 9 13 14 | syl2anc | |- ( A ~~ B -> ( 2o ^m A ) ~~ ~P B ) |
| 16 | entr | |- ( ( ~P A ~~ ( 2o ^m A ) /\ ( 2o ^m A ) ~~ ~P B ) -> ~P A ~~ ~P B ) |
|
| 17 | 4 15 16 | syl2anc | |- ( A ~~ B -> ~P A ~~ ~P B ) |