This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of sets is a set. For a shorter proof using djuss see djuexALT . (Contributed by AV, 28-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuex | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 2 | snex | |- { (/) } e. _V |
|
| 3 | 2 | a1i | |- ( B e. W -> { (/) } e. _V ) |
| 4 | xpexg | |- ( ( { (/) } e. _V /\ A e. V ) -> ( { (/) } X. A ) e. _V ) |
|
| 5 | 3 4 | sylan | |- ( ( B e. W /\ A e. V ) -> ( { (/) } X. A ) e. _V ) |
| 6 | 5 | ancoms | |- ( ( A e. V /\ B e. W ) -> ( { (/) } X. A ) e. _V ) |
| 7 | snex | |- { 1o } e. _V |
|
| 8 | 7 | a1i | |- ( A e. V -> { 1o } e. _V ) |
| 9 | xpexg | |- ( ( { 1o } e. _V /\ B e. W ) -> ( { 1o } X. B ) e. _V ) |
|
| 10 | 8 9 | sylan | |- ( ( A e. V /\ B e. W ) -> ( { 1o } X. B ) e. _V ) |
| 11 | unexg | |- ( ( ( { (/) } X. A ) e. _V /\ ( { 1o } X. B ) e. _V ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
|
| 12 | 6 10 11 | syl2anc | |- ( ( A e. V /\ B e. W ) -> ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) e. _V ) |
| 13 | 1 12 | eqeltrid | |- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) |