This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law for cardinal addition. Exercise 4.56(f) of Mendelson p. 258. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 1-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudom1 | |- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | |- { (/) } e. _V |
|
| 2 | 1 | xpdom2 | |- ( A ~<_ B -> ( { (/) } X. A ) ~<_ ( { (/) } X. B ) ) |
| 3 | snex | |- { 1o } e. _V |
|
| 4 | xpexg | |- ( ( { 1o } e. _V /\ C e. V ) -> ( { 1o } X. C ) e. _V ) |
|
| 5 | 3 4 | mpan | |- ( C e. V -> ( { 1o } X. C ) e. _V ) |
| 6 | domrefg | |- ( ( { 1o } X. C ) e. _V -> ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) |
|
| 7 | 5 6 | syl | |- ( C e. V -> ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) |
| 8 | xp01disjl | |- ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) |
|
| 9 | undom | |- ( ( ( ( { (/) } X. A ) ~<_ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) /\ ( ( { (/) } X. B ) i^i ( { 1o } X. C ) ) = (/) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
|
| 10 | 8 9 | mpan2 | |- ( ( ( { (/) } X. A ) ~<_ ( { (/) } X. B ) /\ ( { 1o } X. C ) ~<_ ( { 1o } X. C ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
| 11 | 2 7 10 | syl2an | |- ( ( A ~<_ B /\ C e. V ) -> ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) ~<_ ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) ) |
| 12 | df-dju | |- ( A |_| C ) = ( ( { (/) } X. A ) u. ( { 1o } X. C ) ) |
|
| 13 | df-dju | |- ( B |_| C ) = ( ( { (/) } X. B ) u. ( { 1o } X. C ) ) |
|
| 14 | 11 12 13 | 3brtr4g | |- ( ( A ~<_ B /\ C e. V ) -> ( A |_| C ) ~<_ ( B |_| C ) ) |