This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitivity of dominance relation. Theorem 17 of Suppes p. 94. (Contributed by NM, 4-Jun-1998) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domtr | |- ( ( A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | brdom | |- ( x ~<_ y <-> E. g g : x -1-1-> y ) |
| 4 | vex | |- z e. _V |
|
| 5 | 4 | brdom | |- ( y ~<_ z <-> E. f f : y -1-1-> z ) |
| 6 | exdistrv | |- ( E. g E. f ( g : x -1-1-> y /\ f : y -1-1-> z ) <-> ( E. g g : x -1-1-> y /\ E. f f : y -1-1-> z ) ) |
|
| 7 | f1co | |- ( ( f : y -1-1-> z /\ g : x -1-1-> y ) -> ( f o. g ) : x -1-1-> z ) |
|
| 8 | 7 | ancoms | |- ( ( g : x -1-1-> y /\ f : y -1-1-> z ) -> ( f o. g ) : x -1-1-> z ) |
| 9 | vex | |- f e. _V |
|
| 10 | vex | |- g e. _V |
|
| 11 | 9 10 | coex | |- ( f o. g ) e. _V |
| 12 | f1eq1 | |- ( h = ( f o. g ) -> ( h : x -1-1-> z <-> ( f o. g ) : x -1-1-> z ) ) |
|
| 13 | 11 12 | spcev | |- ( ( f o. g ) : x -1-1-> z -> E. h h : x -1-1-> z ) |
| 14 | 8 13 | syl | |- ( ( g : x -1-1-> y /\ f : y -1-1-> z ) -> E. h h : x -1-1-> z ) |
| 15 | 4 | brdom | |- ( x ~<_ z <-> E. h h : x -1-1-> z ) |
| 16 | 14 15 | sylibr | |- ( ( g : x -1-1-> y /\ f : y -1-1-> z ) -> x ~<_ z ) |
| 17 | 16 | exlimivv | |- ( E. g E. f ( g : x -1-1-> y /\ f : y -1-1-> z ) -> x ~<_ z ) |
| 18 | 6 17 | sylbir | |- ( ( E. g g : x -1-1-> y /\ E. f f : y -1-1-> z ) -> x ~<_ z ) |
| 19 | 3 5 18 | syl2anb | |- ( ( x ~<_ y /\ y ~<_ z ) -> x ~<_ z ) |
| 20 | 1 19 | vtoclr | |- ( ( A ~<_ B /\ B ~<_ C ) -> A ~<_ C ) |