This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Hartogs function at a set X is weakly dominated by ~P ( X X. X ) . This follows from a more precise analysis of the bound used in hartogs to prove that ( harX ) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harwdom | |- ( X e. V -> ( har ` X ) ~<_* ~P ( X X. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
|
| 2 | eqid | |- { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } = { <. s , t >. | E. w e. y E. z e. y ( ( s = ( f ` w ) /\ t = ( f ` z ) ) /\ w _E z ) } |
|
| 3 | 1 2 | hartogslem1 | |- ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) /\ Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { x e. On | x ~<_ X } ) ) |
| 4 | 3 | simp2i | |- Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 5 | 3 | simp1i | |- dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) |
| 6 | sqxpexg | |- ( X e. V -> ( X X. X ) e. _V ) |
|
| 7 | 6 | pwexd | |- ( X e. V -> ~P ( X X. X ) e. _V ) |
| 8 | ssexg | |- ( ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) /\ ~P ( X X. X ) e. _V ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
|
| 9 | 5 7 8 | sylancr | |- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
| 10 | funex | |- ( ( Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
|
| 11 | 4 9 10 | sylancr | |- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V ) |
| 12 | funfn | |- ( Fun { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } <-> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
|
| 13 | 4 12 | mpbi | |- { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } |
| 14 | 13 | a1i | |- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
| 15 | 3 | simp3i | |- ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = { x e. On | x ~<_ X } ) |
| 16 | harval | |- ( X e. V -> ( har ` X ) = { x e. On | x ~<_ X } ) |
|
| 17 | 15 16 | eqtr4d | |- ( X e. V -> ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = ( har ` X ) ) |
| 18 | df-fo | |- ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) <-> ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } Fn dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ ran { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } = ( har ` X ) ) ) |
|
| 19 | 14 17 18 | sylanbrc | |- ( X e. V -> { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) ) |
| 20 | fowdom | |- ( ( { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } e. _V /\ { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } : dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } -onto-> ( har ` X ) ) -> ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
|
| 21 | 11 19 20 | syl2anc | |- ( X e. V -> ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ) |
| 22 | ssdomg | |- ( ~P ( X X. X ) e. _V -> ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } C_ ~P ( X X. X ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) ) ) |
|
| 23 | 7 5 22 | mpisyl | |- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) ) |
| 24 | domwdom | |- ( dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_ ~P ( X X. X ) -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) |
|
| 25 | 23 24 | syl | |- ( X e. V -> dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) |
| 26 | wdomtr | |- ( ( ( har ` X ) ~<_* dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } /\ dom { <. r , y >. | ( ( ( dom r C_ X /\ ( _I |` dom r ) C_ r /\ r C_ ( dom r X. dom r ) ) /\ ( r \ _I ) We dom r ) /\ y = dom OrdIso ( ( r \ _I ) , dom r ) ) } ~<_* ~P ( X X. X ) ) -> ( har ` X ) ~<_* ~P ( X X. X ) ) |
|
| 27 | 21 25 26 | syl2anc | |- ( X e. V -> ( har ` X ) ~<_* ~P ( X X. X ) ) |