This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchac | |- ( GCH = _V -> CHOICE ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | omex | |- _om e. _V |
|
| 3 | 1 2 | unex | |- ( x u. _om ) e. _V |
| 4 | ssun2 | |- _om C_ ( x u. _om ) |
|
| 5 | ssdomg | |- ( ( x u. _om ) e. _V -> ( _om C_ ( x u. _om ) -> _om ~<_ ( x u. _om ) ) ) |
|
| 6 | 3 4 5 | mp2 | |- _om ~<_ ( x u. _om ) |
| 7 | id | |- ( GCH = _V -> GCH = _V ) |
|
| 8 | 3 7 | eleqtrrid | |- ( GCH = _V -> ( x u. _om ) e. GCH ) |
| 9 | 3 | pwex | |- ~P ( x u. _om ) e. _V |
| 10 | 9 7 | eleqtrrid | |- ( GCH = _V -> ~P ( x u. _om ) e. GCH ) |
| 11 | gchacg | |- ( ( _om ~<_ ( x u. _om ) /\ ( x u. _om ) e. GCH /\ ~P ( x u. _om ) e. GCH ) -> ~P ( x u. _om ) e. dom card ) |
|
| 12 | 6 8 10 11 | mp3an2i | |- ( GCH = _V -> ~P ( x u. _om ) e. dom card ) |
| 13 | 3 | canth2 | |- ( x u. _om ) ~< ~P ( x u. _om ) |
| 14 | sdomdom | |- ( ( x u. _om ) ~< ~P ( x u. _om ) -> ( x u. _om ) ~<_ ~P ( x u. _om ) ) |
|
| 15 | 13 14 | ax-mp | |- ( x u. _om ) ~<_ ~P ( x u. _om ) |
| 16 | numdom | |- ( ( ~P ( x u. _om ) e. dom card /\ ( x u. _om ) ~<_ ~P ( x u. _om ) ) -> ( x u. _om ) e. dom card ) |
|
| 17 | 12 15 16 | sylancl | |- ( GCH = _V -> ( x u. _om ) e. dom card ) |
| 18 | ssun1 | |- x C_ ( x u. _om ) |
|
| 19 | ssnum | |- ( ( ( x u. _om ) e. dom card /\ x C_ ( x u. _om ) ) -> x e. dom card ) |
|
| 20 | 17 18 19 | sylancl | |- ( GCH = _V -> x e. dom card ) |
| 21 | 1 | a1i | |- ( GCH = _V -> x e. _V ) |
| 22 | 20 21 | 2thd | |- ( GCH = _V -> ( x e. dom card <-> x e. _V ) ) |
| 23 | 22 | eqrdv | |- ( GCH = _V -> dom card = _V ) |
| 24 | dfac10 | |- ( CHOICE <-> dom card = _V ) |
|
| 25 | 23 24 | sylibr | |- ( GCH = _V -> CHOICE ) |