This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eirr . (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eirr.1 | |- F = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
|
| eirr.2 | |- ( ph -> P e. ZZ ) |
||
| eirr.3 | |- ( ph -> Q e. NN ) |
||
| eirr.4 | |- ( ph -> _e = ( P / Q ) ) |
||
| Assertion | eirrlem | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eirr.1 | |- F = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
|
| 2 | eirr.2 | |- ( ph -> P e. ZZ ) |
|
| 3 | eirr.3 | |- ( ph -> Q e. NN ) |
|
| 4 | eirr.4 | |- ( ph -> _e = ( P / Q ) ) |
|
| 5 | fzfid | |- ( ph -> ( 0 ... Q ) e. Fin ) |
|
| 6 | elfznn0 | |- ( k e. ( 0 ... Q ) -> k e. NN0 ) |
|
| 7 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 8 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 9 | 7 8 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 10 | 9 | oveq1d | |- ( n e. NN0 -> ( ( 1 ^ n ) / ( ! ` n ) ) = ( 1 / ( ! ` n ) ) ) |
| 11 | 10 | mpteq2ia | |- ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
| 12 | 1 11 | eqtr4i | |- F = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 13 | 12 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) |
| 14 | 13 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( 1 ^ k ) / ( ! ` k ) ) ) |
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | 15 | a1i | |- ( ph -> 1 e. CC ) |
| 17 | eftcl | |- ( ( 1 e. CC /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 18 | 16 17 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 19 | 14 18 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 20 | 6 19 | sylan2 | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) e. CC ) |
| 21 | 5 20 | fsumcl | |- ( ph -> sum_ k e. ( 0 ... Q ) ( F ` k ) e. CC ) |
| 22 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 23 | eqid | |- ( ZZ>= ` ( Q + 1 ) ) = ( ZZ>= ` ( Q + 1 ) ) |
|
| 24 | 3 | peano2nnd | |- ( ph -> ( Q + 1 ) e. NN ) |
| 25 | 24 | nnnn0d | |- ( ph -> ( Q + 1 ) e. NN0 ) |
| 26 | eqidd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( F ` k ) ) |
|
| 27 | fveq2 | |- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
|
| 28 | 27 | oveq2d | |- ( n = k -> ( 1 / ( ! ` n ) ) = ( 1 / ( ! ` k ) ) ) |
| 29 | ovex | |- ( 1 / ( ! ` k ) ) e. _V |
|
| 30 | 28 1 29 | fvmpt | |- ( k e. NN0 -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 31 | 30 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 32 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 33 | 32 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 34 | 33 | nnrpd | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR+ ) |
| 35 | 34 | rpreccld | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( ! ` k ) ) e. RR+ ) |
| 36 | 31 35 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR+ ) |
| 37 | 12 | efcllem | |- ( 1 e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| 38 | 16 37 | syl | |- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
| 39 | 22 23 25 26 36 38 | isumrpcl | |- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR+ ) |
| 40 | 39 | rpred | |- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR ) |
| 41 | 40 | recnd | |- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. CC ) |
| 42 | esum | |- _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
|
| 43 | 30 | sumeq2i | |- sum_ k e. NN0 ( F ` k ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
| 44 | 42 43 | eqtr4i | |- _e = sum_ k e. NN0 ( F ` k ) |
| 45 | 22 23 25 26 19 38 | isumsplit | |- ( ph -> sum_ k e. NN0 ( F ` k ) = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 46 | 44 45 | eqtrid | |- ( ph -> _e = ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 47 | 3 | nncnd | |- ( ph -> Q e. CC ) |
| 48 | pncan | |- ( ( Q e. CC /\ 1 e. CC ) -> ( ( Q + 1 ) - 1 ) = Q ) |
|
| 49 | 47 15 48 | sylancl | |- ( ph -> ( ( Q + 1 ) - 1 ) = Q ) |
| 50 | 49 | oveq2d | |- ( ph -> ( 0 ... ( ( Q + 1 ) - 1 ) ) = ( 0 ... Q ) ) |
| 51 | 50 | sumeq1d | |- ( ph -> sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) = sum_ k e. ( 0 ... Q ) ( F ` k ) ) |
| 52 | 51 | oveq1d | |- ( ph -> ( sum_ k e. ( 0 ... ( ( Q + 1 ) - 1 ) ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 53 | 46 52 | eqtrd | |- ( ph -> _e = ( sum_ k e. ( 0 ... Q ) ( F ` k ) + sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 54 | 21 41 53 | mvrladdd | |- ( ph -> ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
| 55 | 54 | oveq2d | |- ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 56 | 3 | nnnn0d | |- ( ph -> Q e. NN0 ) |
| 57 | 56 | faccld | |- ( ph -> ( ! ` Q ) e. NN ) |
| 58 | 57 | nncnd | |- ( ph -> ( ! ` Q ) e. CC ) |
| 59 | ere | |- _e e. RR |
|
| 60 | 59 | recni | |- _e e. CC |
| 61 | 60 | a1i | |- ( ph -> _e e. CC ) |
| 62 | 58 61 21 | subdid | |- ( ph -> ( ( ! ` Q ) x. ( _e - sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) |
| 63 | 55 62 | eqtr3d | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) ) |
| 64 | 4 | oveq2d | |- ( ph -> ( ( ! ` Q ) x. _e ) = ( ( ! ` Q ) x. ( P / Q ) ) ) |
| 65 | 2 | zcnd | |- ( ph -> P e. CC ) |
| 66 | 3 | nnne0d | |- ( ph -> Q =/= 0 ) |
| 67 | 58 65 47 66 | div12d | |- ( ph -> ( ( ! ` Q ) x. ( P / Q ) ) = ( P x. ( ( ! ` Q ) / Q ) ) ) |
| 68 | 64 67 | eqtrd | |- ( ph -> ( ( ! ` Q ) x. _e ) = ( P x. ( ( ! ` Q ) / Q ) ) ) |
| 69 | 3 | nnred | |- ( ph -> Q e. RR ) |
| 70 | 69 | leidd | |- ( ph -> Q <_ Q ) |
| 71 | facdiv | |- ( ( Q e. NN0 /\ Q e. NN /\ Q <_ Q ) -> ( ( ! ` Q ) / Q ) e. NN ) |
|
| 72 | 56 3 70 71 | syl3anc | |- ( ph -> ( ( ! ` Q ) / Q ) e. NN ) |
| 73 | 72 | nnzd | |- ( ph -> ( ( ! ` Q ) / Q ) e. ZZ ) |
| 74 | 2 73 | zmulcld | |- ( ph -> ( P x. ( ( ! ` Q ) / Q ) ) e. ZZ ) |
| 75 | 68 74 | eqeltrd | |- ( ph -> ( ( ! ` Q ) x. _e ) e. ZZ ) |
| 76 | 5 58 20 | fsummulc2 | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) = sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) ) |
| 77 | 6 | adantl | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> k e. NN0 ) |
| 78 | 77 30 | syl | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( F ` k ) = ( 1 / ( ! ` k ) ) ) |
| 79 | 78 | oveq2d | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) |
| 80 | 58 | adantr | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` Q ) e. CC ) |
| 81 | 6 33 | sylan2 | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. NN ) |
| 82 | 81 | nncnd | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) e. CC ) |
| 83 | facne0 | |- ( k e. NN0 -> ( ! ` k ) =/= 0 ) |
|
| 84 | 77 83 | syl | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ! ` k ) =/= 0 ) |
| 85 | 80 82 84 | divrecd | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) = ( ( ! ` Q ) x. ( 1 / ( ! ` k ) ) ) ) |
| 86 | 79 85 | eqtr4d | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) = ( ( ! ` Q ) / ( ! ` k ) ) ) |
| 87 | permnn | |- ( k e. ( 0 ... Q ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) |
|
| 88 | 87 | adantl | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) / ( ! ` k ) ) e. NN ) |
| 89 | 86 88 | eqeltrd | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. NN ) |
| 90 | 89 | nnzd | |- ( ( ph /\ k e. ( 0 ... Q ) ) -> ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) |
| 91 | 5 90 | fsumzcl | |- ( ph -> sum_ k e. ( 0 ... Q ) ( ( ! ` Q ) x. ( F ` k ) ) e. ZZ ) |
| 92 | 76 91 | eqeltrd | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) e. ZZ ) |
| 93 | 75 92 | zsubcld | |- ( ph -> ( ( ( ! ` Q ) x. _e ) - ( ( ! ` Q ) x. sum_ k e. ( 0 ... Q ) ( F ` k ) ) ) e. ZZ ) |
| 94 | 63 93 | eqeltrd | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
| 95 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 96 | 57 | nnrpd | |- ( ph -> ( ! ` Q ) e. RR+ ) |
| 97 | 96 39 | rpmulcld | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. RR+ ) |
| 98 | 97 | rpgt0d | |- ( ph -> 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 99 | 24 | peano2nnd | |- ( ph -> ( ( Q + 1 ) + 1 ) e. NN ) |
| 100 | 99 | nnred | |- ( ph -> ( ( Q + 1 ) + 1 ) e. RR ) |
| 101 | 25 | faccld | |- ( ph -> ( ! ` ( Q + 1 ) ) e. NN ) |
| 102 | 101 24 | nnmulcld | |- ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. NN ) |
| 103 | 100 102 | nndivred | |- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. RR ) |
| 104 | 57 | nnrecred | |- ( ph -> ( 1 / ( ! ` Q ) ) e. RR ) |
| 105 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 106 | 105 | oveq1i | |- ( ( abs ` 1 ) ^ n ) = ( 1 ^ n ) |
| 107 | 106 | oveq1i | |- ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) = ( ( 1 ^ n ) / ( ! ` n ) ) |
| 108 | 107 | mpteq2i | |- ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( 1 ^ n ) / ( ! ` n ) ) ) |
| 109 | 12 108 | eqtr4i | |- F = ( n e. NN0 |-> ( ( ( abs ` 1 ) ^ n ) / ( ! ` n ) ) ) |
| 110 | eqid | |- ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) / ( ! ` ( Q + 1 ) ) ) x. ( ( 1 / ( ( Q + 1 ) + 1 ) ) ^ n ) ) ) |
|
| 111 | 1le1 | |- 1 <_ 1 |
|
| 112 | 105 111 | eqbrtri | |- ( abs ` 1 ) <_ 1 |
| 113 | 112 | a1i | |- ( ph -> ( abs ` 1 ) <_ 1 ) |
| 114 | 12 109 110 24 16 113 | eftlub | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) <_ ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) |
| 115 | 39 | rprege0d | |- ( ph -> ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) ) |
| 116 | absid | |- ( ( sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) e. RR /\ 0 <_ sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
|
| 117 | 115 116 | syl | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) = sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) |
| 118 | 105 | oveq1i | |- ( ( abs ` 1 ) ^ ( Q + 1 ) ) = ( 1 ^ ( Q + 1 ) ) |
| 119 | 24 | nnzd | |- ( ph -> ( Q + 1 ) e. ZZ ) |
| 120 | 1exp | |- ( ( Q + 1 ) e. ZZ -> ( 1 ^ ( Q + 1 ) ) = 1 ) |
|
| 121 | 119 120 | syl | |- ( ph -> ( 1 ^ ( Q + 1 ) ) = 1 ) |
| 122 | 118 121 | eqtrid | |- ( ph -> ( ( abs ` 1 ) ^ ( Q + 1 ) ) = 1 ) |
| 123 | 122 | oveq1d | |- ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) ) |
| 124 | 103 | recnd | |- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) e. CC ) |
| 125 | 124 | mullidd | |- ( ph -> ( 1 x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 126 | 123 125 | eqtrd | |- ( ph -> ( ( ( abs ` 1 ) ^ ( Q + 1 ) ) x. ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) = ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 127 | 114 117 126 | 3brtr3d | |- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) <_ ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) |
| 128 | 24 | nnred | |- ( ph -> ( Q + 1 ) e. RR ) |
| 129 | 128 128 | readdcld | |- ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) e. RR ) |
| 130 | 128 128 | remulcld | |- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) e. RR ) |
| 131 | 1red | |- ( ph -> 1 e. RR ) |
|
| 132 | 3 | nnge1d | |- ( ph -> 1 <_ Q ) |
| 133 | 1nn | |- 1 e. NN |
|
| 134 | nnleltp1 | |- ( ( 1 e. NN /\ Q e. NN ) -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) |
|
| 135 | 133 3 134 | sylancr | |- ( ph -> ( 1 <_ Q <-> 1 < ( Q + 1 ) ) ) |
| 136 | 132 135 | mpbid | |- ( ph -> 1 < ( Q + 1 ) ) |
| 137 | 131 128 128 136 | ltadd2dd | |- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) + ( Q + 1 ) ) ) |
| 138 | 24 | nncnd | |- ( ph -> ( Q + 1 ) e. CC ) |
| 139 | 138 | 2timesd | |- ( ph -> ( 2 x. ( Q + 1 ) ) = ( ( Q + 1 ) + ( Q + 1 ) ) ) |
| 140 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 141 | 131 69 131 132 | leadd1dd | |- ( ph -> ( 1 + 1 ) <_ ( Q + 1 ) ) |
| 142 | 140 141 | eqbrtrid | |- ( ph -> 2 <_ ( Q + 1 ) ) |
| 143 | 2re | |- 2 e. RR |
|
| 144 | 143 | a1i | |- ( ph -> 2 e. RR ) |
| 145 | 24 | nngt0d | |- ( ph -> 0 < ( Q + 1 ) ) |
| 146 | lemul1 | |- ( ( 2 e. RR /\ ( Q + 1 ) e. RR /\ ( ( Q + 1 ) e. RR /\ 0 < ( Q + 1 ) ) ) -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) |
|
| 147 | 144 128 128 145 146 | syl112anc | |- ( ph -> ( 2 <_ ( Q + 1 ) <-> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) ) |
| 148 | 142 147 | mpbid | |- ( ph -> ( 2 x. ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 149 | 139 148 | eqbrtrrd | |- ( ph -> ( ( Q + 1 ) + ( Q + 1 ) ) <_ ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 150 | 100 129 130 137 149 | ltletrd | |- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( Q + 1 ) x. ( Q + 1 ) ) ) |
| 151 | facp1 | |- ( Q e. NN0 -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) |
|
| 152 | 56 151 | syl | |- ( ph -> ( ! ` ( Q + 1 ) ) = ( ( ! ` Q ) x. ( Q + 1 ) ) ) |
| 153 | 152 | oveq1d | |- ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) ) |
| 154 | 101 | nncnd | |- ( ph -> ( ! ` ( Q + 1 ) ) e. CC ) |
| 155 | 57 | nnne0d | |- ( ph -> ( ! ` Q ) =/= 0 ) |
| 156 | 154 58 155 | divrecd | |- ( ph -> ( ( ! ` ( Q + 1 ) ) / ( ! ` Q ) ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 157 | 138 58 155 | divcan3d | |- ( ph -> ( ( ( ! ` Q ) x. ( Q + 1 ) ) / ( ! ` Q ) ) = ( Q + 1 ) ) |
| 158 | 153 156 157 | 3eqtr3rd | |- ( ph -> ( Q + 1 ) = ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 159 | 158 | oveq1d | |- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) ) |
| 160 | 104 | recnd | |- ( ph -> ( 1 / ( ! ` Q ) ) e. CC ) |
| 161 | 154 160 138 | mul32d | |- ( ph -> ( ( ( ! ` ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 162 | 159 161 | eqtrd | |- ( ph -> ( ( Q + 1 ) x. ( Q + 1 ) ) = ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 163 | 150 162 | breqtrd | |- ( ph -> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) |
| 164 | 102 | nnred | |- ( ph -> ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR ) |
| 165 | 102 | nngt0d | |- ( ph -> 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) |
| 166 | ltdivmul | |- ( ( ( ( Q + 1 ) + 1 ) e. RR /\ ( 1 / ( ! ` Q ) ) e. RR /\ ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) e. RR /\ 0 < ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) ) -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) |
|
| 167 | 100 104 164 165 166 | syl112anc | |- ( ph -> ( ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) <-> ( ( Q + 1 ) + 1 ) < ( ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) x. ( 1 / ( ! ` Q ) ) ) ) ) |
| 168 | 163 167 | mpbird | |- ( ph -> ( ( ( Q + 1 ) + 1 ) / ( ( ! ` ( Q + 1 ) ) x. ( Q + 1 ) ) ) < ( 1 / ( ! ` Q ) ) ) |
| 169 | 40 103 104 127 168 | lelttrd | |- ( ph -> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) |
| 170 | 40 131 96 | ltmuldiv2d | |- ( ph -> ( ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 <-> sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) < ( 1 / ( ! ` Q ) ) ) ) |
| 171 | 169 170 | mpbird | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < 1 ) |
| 172 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 173 | 171 172 | breqtrrdi | |- ( ph -> ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) |
| 174 | btwnnz | |- ( ( 0 e. ZZ /\ 0 < ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) /\ ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) < ( 0 + 1 ) ) -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
|
| 175 | 95 98 173 174 | syl3anc | |- ( ph -> -. ( ( ! ` Q ) x. sum_ k e. ( ZZ>= ` ( Q + 1 ) ) ( F ` k ) ) e. ZZ ) |
| 176 | 94 175 | pm2.65i | |- -. ph |