This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eirr . (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eirr.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) | |
| eirr.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) | ||
| eirr.3 | ⊢ ( 𝜑 → 𝑄 ∈ ℕ ) | ||
| eirr.4 | ⊢ ( 𝜑 → e = ( 𝑃 / 𝑄 ) ) | ||
| Assertion | eirrlem | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eirr.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) | |
| 2 | eirr.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) | |
| 3 | eirr.3 | ⊢ ( 𝜑 → 𝑄 ∈ ℕ ) | |
| 4 | eirr.4 | ⊢ ( 𝜑 → e = ( 𝑃 / 𝑄 ) ) | |
| 5 | fzfid | ⊢ ( 𝜑 → ( 0 ... 𝑄 ) ∈ Fin ) | |
| 6 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑄 ) → 𝑘 ∈ ℕ0 ) | |
| 7 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 8 | 1exp | ⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ↑ 𝑛 ) = 1 ) |
| 10 | 9 | oveq1d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 11 | 10 | mpteq2ia | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 1 / ( ! ‘ 𝑛 ) ) ) |
| 12 | 1 11 | eqtr4i | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 13 | 12 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 17 | eftcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 18 | 16 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 19 | 14 18 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 20 | 6 19 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 21 | 5 20 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 22 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 23 | eqid | ⊢ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) = ( ℤ≥ ‘ ( 𝑄 + 1 ) ) | |
| 24 | 3 | peano2nnd | ⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℕ ) |
| 25 | 24 | nnnn0d | ⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℕ0 ) |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( ! ‘ 𝑛 ) ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 29 | ovex | ⊢ ( 1 / ( ! ‘ 𝑘 ) ) ∈ V | |
| 30 | 28 1 29 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 32 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 34 | 33 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ+ ) |
| 35 | 34 | rpreccld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ! ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 36 | 31 35 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 37 | 12 | efcllem | ⊢ ( 1 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 38 | 16 37 | syl | ⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 39 | 22 23 25 26 36 38 | isumrpcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
| 40 | 39 | rpred | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 41 | 40 | recnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 42 | esum | ⊢ e = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) | |
| 43 | 30 | sumeq2i | ⊢ Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ℕ0 ( 1 / ( ! ‘ 𝑘 ) ) |
| 44 | 42 43 | eqtr4i | ⊢ e = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) |
| 45 | 22 23 25 26 19 38 | isumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 46 | 44 45 | eqtrid | ⊢ ( 𝜑 → e = ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 47 | 3 | nncnd | ⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 48 | pncan | ⊢ ( ( 𝑄 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑄 + 1 ) − 1 ) = 𝑄 ) | |
| 49 | 47 15 48 | sylancl | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) − 1 ) = 𝑄 ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) = ( 0 ... 𝑄 ) ) |
| 51 | 50 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) |
| 52 | 51 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( ( 𝑄 + 1 ) − 1 ) ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 | 46 52 | eqtrd | ⊢ ( 𝜑 → e = ( Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 | 21 41 53 | mvrladdd | ⊢ ( 𝜑 → ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 55 | 54 | oveq2d | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 56 | 3 | nnnn0d | ⊢ ( 𝜑 → 𝑄 ∈ ℕ0 ) |
| 57 | 56 | faccld | ⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℕ ) |
| 58 | 57 | nncnd | ⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℂ ) |
| 59 | ere | ⊢ e ∈ ℝ | |
| 60 | 59 | recni | ⊢ e ∈ ℂ |
| 61 | 60 | a1i | ⊢ ( 𝜑 → e ∈ ℂ ) |
| 62 | 58 61 21 | subdid | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( e − Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 63 | 55 62 | eqtr3d | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 64 | 4 | oveq2d | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) = ( ( ! ‘ 𝑄 ) · ( 𝑃 / 𝑄 ) ) ) |
| 65 | 2 | zcnd | ⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 66 | 3 | nnne0d | ⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
| 67 | 58 65 47 66 | div12d | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · ( 𝑃 / 𝑄 ) ) = ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ) |
| 68 | 64 67 | eqtrd | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) = ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ) |
| 69 | 3 | nnred | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 70 | 69 | leidd | ⊢ ( 𝜑 → 𝑄 ≤ 𝑄 ) |
| 71 | facdiv | ⊢ ( ( 𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℕ ∧ 𝑄 ≤ 𝑄 ) → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℕ ) | |
| 72 | 56 3 70 71 | syl3anc | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℕ ) |
| 73 | 72 | nnzd | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) / 𝑄 ) ∈ ℤ ) |
| 74 | 2 73 | zmulcld | ⊢ ( 𝜑 → ( 𝑃 · ( ( ! ‘ 𝑄 ) / 𝑄 ) ) ∈ ℤ ) |
| 75 | 68 74 | eqeltrd | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · e ) ∈ ℤ ) |
| 76 | 5 58 20 | fsummulc2 | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ) |
| 77 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → 𝑘 ∈ ℕ0 ) |
| 78 | 77 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 1 / ( ! ‘ 𝑘 ) ) ) |
| 79 | 78 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) · ( 1 / ( ! ‘ 𝑘 ) ) ) ) |
| 80 | 58 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑄 ) ∈ ℂ ) |
| 81 | 6 33 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 82 | 81 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 83 | facne0 | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ≠ 0 ) | |
| 84 | 77 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 85 | 80 82 84 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) · ( 1 / ( ! ‘ 𝑘 ) ) ) ) |
| 86 | 79 85 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) = ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ) |
| 87 | permnn | ⊢ ( 𝑘 ∈ ( 0 ... 𝑄 ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ∈ ℕ ) | |
| 88 | 87 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) / ( ! ‘ 𝑘 ) ) ∈ ℕ ) |
| 89 | 86 88 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℕ ) |
| 90 | 89 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑄 ) ) → ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 91 | 5 90 | fsumzcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( ( ! ‘ 𝑄 ) · ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 92 | 76 91 | eqeltrd | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 93 | 75 92 | zsubcld | ⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · e ) − ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( 0 ... 𝑄 ) ( 𝐹 ‘ 𝑘 ) ) ) ∈ ℤ ) |
| 94 | 63 93 | eqeltrd | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 95 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 96 | 57 | nnrpd | ⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ∈ ℝ+ ) |
| 97 | 96 39 | rpmulcld | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 98 | 97 | rpgt0d | ⊢ ( 𝜑 → 0 < ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 99 | 24 | peano2nnd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) ∈ ℕ ) |
| 100 | 99 | nnred | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) ∈ ℝ ) |
| 101 | 25 | faccld | ⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) ∈ ℕ ) |
| 102 | 101 24 | nnmulcld | ⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℕ ) |
| 103 | 100 102 | nndivred | ⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ∈ ℝ ) |
| 104 | 57 | nnrecred | ⊢ ( 𝜑 → ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℝ ) |
| 105 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 106 | 105 | oveq1i | ⊢ ( ( abs ‘ 1 ) ↑ 𝑛 ) = ( 1 ↑ 𝑛 ) |
| 107 | 106 | oveq1i | ⊢ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) = ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) |
| 108 | 107 | mpteq2i | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 109 | 12 108 | eqtr4i | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 1 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 110 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) / ( ! ‘ ( 𝑄 + 1 ) ) ) · ( ( 1 / ( ( 𝑄 + 1 ) + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) / ( ! ‘ ( 𝑄 + 1 ) ) ) · ( ( 1 / ( ( 𝑄 + 1 ) + 1 ) ) ↑ 𝑛 ) ) ) | |
| 111 | 1le1 | ⊢ 1 ≤ 1 | |
| 112 | 105 111 | eqbrtri | ⊢ ( abs ‘ 1 ) ≤ 1 |
| 113 | 112 | a1i | ⊢ ( 𝜑 → ( abs ‘ 1 ) ≤ 1 ) |
| 114 | 12 109 110 24 16 113 | eftlub | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) ) |
| 115 | 39 | rprege0d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 116 | absid | ⊢ ( ( Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) | |
| 117 | 115 116 | syl | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 118 | 105 | oveq1i | ⊢ ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) = ( 1 ↑ ( 𝑄 + 1 ) ) |
| 119 | 24 | nnzd | ⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℤ ) |
| 120 | 1exp | ⊢ ( ( 𝑄 + 1 ) ∈ ℤ → ( 1 ↑ ( 𝑄 + 1 ) ) = 1 ) | |
| 121 | 119 120 | syl | ⊢ ( 𝜑 → ( 1 ↑ ( 𝑄 + 1 ) ) = 1 ) |
| 122 | 118 121 | eqtrid | ⊢ ( 𝜑 → ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) = 1 ) |
| 123 | 122 | oveq1d | ⊢ ( 𝜑 → ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( 1 · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) ) |
| 124 | 103 | recnd | ⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ∈ ℂ ) |
| 125 | 124 | mullidd | ⊢ ( 𝜑 → ( 1 · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
| 126 | 123 125 | eqtrd | ⊢ ( 𝜑 → ( ( ( abs ‘ 1 ) ↑ ( 𝑄 + 1 ) ) · ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) = ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
| 127 | 114 117 126 | 3brtr3d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) |
| 128 | 24 | nnred | ⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℝ ) |
| 129 | 128 128 | readdcld | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ∈ ℝ ) |
| 130 | 128 128 | remulcld | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ∈ ℝ ) |
| 131 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 132 | 3 | nnge1d | ⊢ ( 𝜑 → 1 ≤ 𝑄 ) |
| 133 | 1nn | ⊢ 1 ∈ ℕ | |
| 134 | nnleltp1 | ⊢ ( ( 1 ∈ ℕ ∧ 𝑄 ∈ ℕ ) → ( 1 ≤ 𝑄 ↔ 1 < ( 𝑄 + 1 ) ) ) | |
| 135 | 133 3 134 | sylancr | ⊢ ( 𝜑 → ( 1 ≤ 𝑄 ↔ 1 < ( 𝑄 + 1 ) ) ) |
| 136 | 132 135 | mpbid | ⊢ ( 𝜑 → 1 < ( 𝑄 + 1 ) ) |
| 137 | 131 128 128 136 | ltadd2dd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ) |
| 138 | 24 | nncnd | ⊢ ( 𝜑 → ( 𝑄 + 1 ) ∈ ℂ ) |
| 139 | 138 | 2timesd | ⊢ ( 𝜑 → ( 2 · ( 𝑄 + 1 ) ) = ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ) |
| 140 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 141 | 131 69 131 132 | leadd1dd | ⊢ ( 𝜑 → ( 1 + 1 ) ≤ ( 𝑄 + 1 ) ) |
| 142 | 140 141 | eqbrtrid | ⊢ ( 𝜑 → 2 ≤ ( 𝑄 + 1 ) ) |
| 143 | 2re | ⊢ 2 ∈ ℝ | |
| 144 | 143 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 145 | 24 | nngt0d | ⊢ ( 𝜑 → 0 < ( 𝑄 + 1 ) ) |
| 146 | lemul1 | ⊢ ( ( 2 ∈ ℝ ∧ ( 𝑄 + 1 ) ∈ ℝ ∧ ( ( 𝑄 + 1 ) ∈ ℝ ∧ 0 < ( 𝑄 + 1 ) ) ) → ( 2 ≤ ( 𝑄 + 1 ) ↔ ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) ) | |
| 147 | 144 128 128 145 146 | syl112anc | ⊢ ( 𝜑 → ( 2 ≤ ( 𝑄 + 1 ) ↔ ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) ) |
| 148 | 142 147 | mpbid | ⊢ ( 𝜑 → ( 2 · ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
| 149 | 139 148 | eqbrtrrd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + ( 𝑄 + 1 ) ) ≤ ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
| 150 | 100 129 130 137 149 | ltletrd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) ) |
| 151 | facp1 | ⊢ ( 𝑄 ∈ ℕ0 → ( ! ‘ ( 𝑄 + 1 ) ) = ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) ) | |
| 152 | 56 151 | syl | ⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) = ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) ) |
| 153 | 152 | oveq1d | ⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) ) |
| 154 | 101 | nncnd | ⊢ ( 𝜑 → ( ! ‘ ( 𝑄 + 1 ) ) ∈ ℂ ) |
| 155 | 57 | nnne0d | ⊢ ( 𝜑 → ( ! ‘ 𝑄 ) ≠ 0 ) |
| 156 | 154 58 155 | divrecd | ⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 157 | 138 58 155 | divcan3d | ⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · ( 𝑄 + 1 ) ) / ( ! ‘ 𝑄 ) ) = ( 𝑄 + 1 ) ) |
| 158 | 153 156 157 | 3eqtr3rd | ⊢ ( 𝜑 → ( 𝑄 + 1 ) = ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 159 | 158 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) · ( 𝑄 + 1 ) ) ) |
| 160 | 104 | recnd | ⊢ ( 𝜑 → ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℂ ) |
| 161 | 154 160 138 | mul32d | ⊢ ( 𝜑 → ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 162 | 159 161 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) · ( 𝑄 + 1 ) ) = ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 163 | 150 162 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 164 | 102 | nnred | ⊢ ( 𝜑 → ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℝ ) |
| 165 | 102 | nngt0d | ⊢ ( 𝜑 → 0 < ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) |
| 166 | ltdivmul | ⊢ ( ( ( ( 𝑄 + 1 ) + 1 ) ∈ ℝ ∧ ( 1 / ( ! ‘ 𝑄 ) ) ∈ ℝ ∧ ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ∈ ℝ ∧ 0 < ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) ) → ( ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ↔ ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) ) | |
| 167 | 100 104 164 165 166 | syl112anc | ⊢ ( 𝜑 → ( ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ↔ ( ( 𝑄 + 1 ) + 1 ) < ( ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) · ( 1 / ( ! ‘ 𝑄 ) ) ) ) ) |
| 168 | 163 167 | mpbird | ⊢ ( 𝜑 → ( ( ( 𝑄 + 1 ) + 1 ) / ( ( ! ‘ ( 𝑄 + 1 ) ) · ( 𝑄 + 1 ) ) ) < ( 1 / ( ! ‘ 𝑄 ) ) ) |
| 169 | 40 103 104 127 168 | lelttrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 1 / ( ! ‘ 𝑄 ) ) ) |
| 170 | 40 131 96 | ltmuldiv2d | ⊢ ( 𝜑 → ( ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < 1 ↔ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) < ( 1 / ( ! ‘ 𝑄 ) ) ) ) |
| 171 | 169 170 | mpbird | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < 1 ) |
| 172 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 173 | 171 172 | breqtrrdi | ⊢ ( 𝜑 → ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < ( 0 + 1 ) ) |
| 174 | btwnnz | ⊢ ( ( 0 ∈ ℤ ∧ 0 < ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∧ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) < ( 0 + 1 ) ) → ¬ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) | |
| 175 | 95 98 173 174 | syl3anc | ⊢ ( 𝜑 → ¬ ( ( ! ‘ 𝑄 ) · Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑄 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 176 | 94 175 | pm2.65i | ⊢ ¬ 𝜑 |