This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of Euler's constant _e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | esum | |- _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-e | |- _e = ( exp ` 1 ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | efval | |- ( 1 e. CC -> ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) |
| 5 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 6 | 1exp | |- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
|
| 7 | 5 6 | syl | |- ( k e. NN0 -> ( 1 ^ k ) = 1 ) |
| 8 | 7 | oveq1d | |- ( k e. NN0 -> ( ( 1 ^ k ) / ( ! ` k ) ) = ( 1 / ( ! ` k ) ) ) |
| 9 | 8 | sumeq2i | |- sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
| 10 | 1 4 9 | 3eqtri | |- _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |