This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | btwnnz | |- ( ( A e. ZZ /\ A < B /\ B < ( A + 1 ) ) -> -. B e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltp1le | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B <-> ( A + 1 ) <_ B ) ) |
|
| 2 | peano2z | |- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
|
| 3 | zre | |- ( ( A + 1 ) e. ZZ -> ( A + 1 ) e. RR ) |
|
| 4 | 2 3 | syl | |- ( A e. ZZ -> ( A + 1 ) e. RR ) |
| 5 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 6 | lenlt | |- ( ( ( A + 1 ) e. RR /\ B e. RR ) -> ( ( A + 1 ) <_ B <-> -. B < ( A + 1 ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + 1 ) <_ B <-> -. B < ( A + 1 ) ) ) |
| 8 | 1 7 | bitrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B <-> -. B < ( A + 1 ) ) ) |
| 9 | 8 | biimpd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B -> -. B < ( A + 1 ) ) ) |
| 10 | 9 | impancom | |- ( ( A e. ZZ /\ A < B ) -> ( B e. ZZ -> -. B < ( A + 1 ) ) ) |
| 11 | 10 | con2d | |- ( ( A e. ZZ /\ A < B ) -> ( B < ( A + 1 ) -> -. B e. ZZ ) ) |
| 12 | 11 | 3impia | |- ( ( A e. ZZ /\ A < B /\ B < ( A + 1 ) ) -> -. B e. ZZ ) |