This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _e is irrational. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eirr | |- _e e/ QQ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) = ( n e. NN0 |-> ( 1 / ( ! ` n ) ) ) |
|
| 2 | simpll | |- ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> p e. ZZ ) |
|
| 3 | simplr | |- ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> q e. NN ) |
|
| 4 | simpr | |- ( ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) -> _e = ( p / q ) ) |
|
| 5 | 1 2 3 4 | eirrlem | |- -. ( ( p e. ZZ /\ q e. NN ) /\ _e = ( p / q ) ) |
| 6 | 5 | imnani | |- ( ( p e. ZZ /\ q e. NN ) -> -. _e = ( p / q ) ) |
| 7 | 6 | nrexdv | |- ( p e. ZZ -> -. E. q e. NN _e = ( p / q ) ) |
| 8 | 7 | nrex | |- -. E. p e. ZZ E. q e. NN _e = ( p / q ) |
| 9 | elq | |- ( _e e. QQ <-> E. p e. ZZ E. q e. NN _e = ( p / q ) ) |
|
| 10 | 8 9 | mtbir | |- -. _e e. QQ |
| 11 | 10 | nelir | |- _e e/ QQ |