This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efcl . The series that defines the exponential function converges, in the case where its argument is nonzero. The ratio test cvgrat is used to show convergence. (Contributed by NM, 26-Apr-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftval.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | efcllem | |- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftval.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | eqid | |- ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) = ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) |
|
| 4 | halfre | |- ( 1 / 2 ) e. RR |
|
| 5 | 4 | a1i | |- ( A e. CC -> ( 1 / 2 ) e. RR ) |
| 6 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 7 | 6 | a1i | |- ( A e. CC -> ( 1 / 2 ) < 1 ) |
| 8 | 2re | |- 2 e. RR |
|
| 9 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 10 | remulcl | |- ( ( 2 e. RR /\ ( abs ` A ) e. RR ) -> ( 2 x. ( abs ` A ) ) e. RR ) |
|
| 11 | 8 9 10 | sylancr | |- ( A e. CC -> ( 2 x. ( abs ` A ) ) e. RR ) |
| 12 | 8 | a1i | |- ( A e. CC -> 2 e. RR ) |
| 13 | 0le2 | |- 0 <_ 2 |
|
| 14 | 13 | a1i | |- ( A e. CC -> 0 <_ 2 ) |
| 15 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 16 | 12 9 14 15 | mulge0d | |- ( A e. CC -> 0 <_ ( 2 x. ( abs ` A ) ) ) |
| 17 | flge0nn0 | |- ( ( ( 2 x. ( abs ` A ) ) e. RR /\ 0 <_ ( 2 x. ( abs ` A ) ) ) -> ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 ) |
|
| 18 | 11 16 17 | syl2anc | |- ( A e. CC -> ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 ) |
| 19 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 20 | 19 | adantl | |- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 21 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 22 | 20 21 | eqeltrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 23 | 9 | adantr | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` A ) e. RR ) |
| 24 | eluznn0 | |- ( ( ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> k e. NN0 ) |
|
| 25 | 18 24 | sylan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> k e. NN0 ) |
| 26 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 27 | 25 26 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. NN ) |
| 28 | 23 27 | nndivred | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) e. RR ) |
| 29 | 4 | a1i | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 1 / 2 ) e. RR ) |
| 30 | 23 25 | reexpcld | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 31 | 25 | faccld | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. NN ) |
| 32 | 30 31 | nndivred | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 33 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 34 | 25 33 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( A ^ k ) e. CC ) |
| 35 | 34 | absge0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( abs ` ( A ^ k ) ) ) |
| 36 | absexp | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
|
| 37 | 25 36 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 38 | 35 37 | breqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ( abs ` A ) ^ k ) ) |
| 39 | 31 | nnred | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. RR ) |
| 40 | 31 | nngt0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 < ( ! ` k ) ) |
| 41 | divge0 | |- ( ( ( ( ( abs ` A ) ^ k ) e. RR /\ 0 <_ ( ( abs ` A ) ^ k ) ) /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> 0 <_ ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
|
| 42 | 30 38 39 40 41 | syl22anc | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 43 | 11 | adantr | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) e. RR ) |
| 44 | peano2nn0 | |- ( ( |_ ` ( 2 x. ( abs ` A ) ) ) e. NN0 -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. NN0 ) |
|
| 45 | 18 44 | syl | |- ( A e. CC -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. NN0 ) |
| 46 | 45 | nn0red | |- ( A e. CC -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. RR ) |
| 47 | 46 | adantr | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) e. RR ) |
| 48 | 27 | nnred | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. RR ) |
| 49 | flltp1 | |- ( ( 2 x. ( abs ` A ) ) e. RR -> ( 2 x. ( abs ` A ) ) < ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) |
|
| 50 | 43 49 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) < ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) |
| 51 | eluzp1p1 | |- ( k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) ) |
|
| 52 | 51 | adantl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) ) |
| 53 | eluzle | |- ( ( k + 1 ) e. ( ZZ>= ` ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) <_ ( k + 1 ) ) |
|
| 54 | 52 53 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( |_ ` ( 2 x. ( abs ` A ) ) ) + 1 ) <_ ( k + 1 ) ) |
| 55 | 43 47 48 50 54 | ltletrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 2 x. ( abs ` A ) ) < ( k + 1 ) ) |
| 56 | 23 | recnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` A ) e. CC ) |
| 57 | 2cn | |- 2 e. CC |
|
| 58 | mulcom | |- ( ( ( abs ` A ) e. CC /\ 2 e. CC ) -> ( ( abs ` A ) x. 2 ) = ( 2 x. ( abs ` A ) ) ) |
|
| 59 | 56 57 58 | sylancl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) x. 2 ) = ( 2 x. ( abs ` A ) ) ) |
| 60 | 27 | nncnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. CC ) |
| 61 | 60 | mullidd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( 1 x. ( k + 1 ) ) = ( k + 1 ) ) |
| 62 | 55 59 61 | 3brtr4d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) x. 2 ) < ( 1 x. ( k + 1 ) ) ) |
| 63 | 2rp | |- 2 e. RR+ |
|
| 64 | 63 | a1i | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 2 e. RR+ ) |
| 65 | 1red | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 1 e. RR ) |
|
| 66 | 27 | nnrpd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. RR+ ) |
| 67 | 23 64 65 66 | lt2mul2divd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) x. 2 ) < ( 1 x. ( k + 1 ) ) <-> ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) ) ) |
| 68 | 62 67 | mpbid | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) ) |
| 69 | ltle | |- ( ( ( ( abs ` A ) / ( k + 1 ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) ) |
|
| 70 | 28 4 69 | sylancl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( abs ` A ) / ( k + 1 ) ) < ( 1 / 2 ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) ) |
| 71 | 68 70 | mpd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) / ( k + 1 ) ) <_ ( 1 / 2 ) ) |
| 72 | 28 29 32 42 71 | lemul2ad | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) <_ ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 73 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 74 | 25 73 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) e. NN0 ) |
| 75 | 1 | eftval | |- ( ( k + 1 ) e. NN0 -> ( F ` ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) |
| 76 | 74 75 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) |
| 77 | 76 | fveq2d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) = ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) ) |
| 78 | absexp | |- ( ( A e. CC /\ ( k + 1 ) e. NN0 ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
|
| 79 | 74 78 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
| 80 | 56 25 | expp1d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ ( k + 1 ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 81 | 79 80 | eqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 82 | 74 | faccld | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. NN ) |
| 83 | 82 | nnred | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. RR ) |
| 84 | 82 | nnnn0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. NN0 ) |
| 85 | 84 | nn0ge0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> 0 <_ ( ! ` ( k + 1 ) ) ) |
| 86 | 83 85 | absidd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ! ` ( k + 1 ) ) ) = ( ! ` ( k + 1 ) ) ) |
| 87 | facp1 | |- ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
|
| 88 | 25 87 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 89 | 86 88 | eqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ! ` ( k + 1 ) ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 90 | 81 89 | oveq12d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` ( A ^ ( k + 1 ) ) ) / ( abs ` ( ! ` ( k + 1 ) ) ) ) = ( ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) / ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
| 91 | expcl | |- ( ( A e. CC /\ ( k + 1 ) e. NN0 ) -> ( A ^ ( k + 1 ) ) e. CC ) |
|
| 92 | 74 91 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( A ^ ( k + 1 ) ) e. CC ) |
| 93 | 82 | nncnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) e. CC ) |
| 94 | 82 | nnne0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` ( k + 1 ) ) =/= 0 ) |
| 95 | 92 93 94 | absdivd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) = ( ( abs ` ( A ^ ( k + 1 ) ) ) / ( abs ` ( ! ` ( k + 1 ) ) ) ) ) |
| 96 | 30 | recnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` A ) ^ k ) e. CC ) |
| 97 | 31 | nncnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) e. CC ) |
| 98 | 31 | nnne0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ! ` k ) =/= 0 ) |
| 99 | 27 | nnne0d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( k + 1 ) =/= 0 ) |
| 100 | 96 97 56 60 98 99 | divmuldivd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) = ( ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) / ( ( ! ` k ) x. ( k + 1 ) ) ) ) |
| 101 | 90 95 100 | 3eqtr4d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ ( k + 1 ) ) / ( ! ` ( k + 1 ) ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) ) |
| 102 | 77 101 | eqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( ( abs ` A ) / ( k + 1 ) ) ) ) |
| 103 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 104 | 25 22 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` k ) e. CC ) |
| 105 | 104 | abscld | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 106 | 105 | recnd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) e. CC ) |
| 107 | mulcom | |- ( ( ( 1 / 2 ) e. CC /\ ( abs ` ( F ` k ) ) e. CC ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) ) |
|
| 108 | 103 106 107 | sylancr | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) ) |
| 109 | 25 19 | syl | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 110 | 109 | fveq2d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 111 | eftabs | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
|
| 112 | 25 111 | syldan | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 113 | 110 112 | eqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` k ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 114 | 113 | oveq1d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( abs ` ( F ` k ) ) x. ( 1 / 2 ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 115 | 108 114 | eqtrd | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) = ( ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) x. ( 1 / 2 ) ) ) |
| 116 | 72 102 115 | 3brtr4d | |- ( ( A e. CC /\ k e. ( ZZ>= ` ( |_ ` ( 2 x. ( abs ` A ) ) ) ) ) -> ( abs ` ( F ` ( k + 1 ) ) ) <_ ( ( 1 / 2 ) x. ( abs ` ( F ` k ) ) ) ) |
| 117 | 2 3 5 7 18 22 116 | cvgrat | |- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |