This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of permutations of N - R objects from a collection of N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | permnn | |- ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | |- ( R e. ( 0 ... N ) -> R e. NN0 ) |
|
| 2 | 1 | faccld | |- ( R e. ( 0 ... N ) -> ( ! ` R ) e. NN ) |
| 3 | fznn0sub | |- ( R e. ( 0 ... N ) -> ( N - R ) e. NN0 ) |
|
| 4 | 3 | faccld | |- ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. NN ) |
| 5 | 4 2 | nnmulcld | |- ( R e. ( 0 ... N ) -> ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN ) |
| 6 | elfz3nn0 | |- ( R e. ( 0 ... N ) -> N e. NN0 ) |
|
| 7 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 8 | 7 | nncnd | |- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 9 | 6 8 | syl | |- ( R e. ( 0 ... N ) -> ( ! ` N ) e. CC ) |
| 10 | 4 | nncnd | |- ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. CC ) |
| 11 | 2 | nncnd | |- ( R e. ( 0 ... N ) -> ( ! ` R ) e. CC ) |
| 12 | facne0 | |- ( R e. NN0 -> ( ! ` R ) =/= 0 ) |
|
| 13 | 1 12 | syl | |- ( R e. ( 0 ... N ) -> ( ! ` R ) =/= 0 ) |
| 14 | 10 11 13 | divcan4d | |- ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) = ( ! ` ( N - R ) ) ) |
| 15 | 14 4 | eqeltrd | |- ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN ) |
| 16 | bcval2 | |- ( R e. ( 0 ... N ) -> ( N _C R ) = ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) ) |
|
| 17 | bccl2 | |- ( R e. ( 0 ... N ) -> ( N _C R ) e. NN ) |
|
| 18 | 16 17 | eqeltrrd | |- ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) |
| 19 | nndivtr | |- ( ( ( ( ! ` R ) e. NN /\ ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN /\ ( ! ` N ) e. CC ) /\ ( ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN /\ ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |
|
| 20 | 2 5 9 15 18 19 | syl32anc | |- ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |