This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrpcl.1 | |- Z = ( ZZ>= ` M ) |
|
| isumrpcl.2 | |- W = ( ZZ>= ` N ) |
||
| isumrpcl.3 | |- ( ph -> N e. Z ) |
||
| isumrpcl.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumrpcl.5 | |- ( ( ph /\ k e. Z ) -> A e. RR+ ) |
||
| isumrpcl.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumrpcl | |- ( ph -> sum_ k e. W A e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrpcl.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumrpcl.2 | |- W = ( ZZ>= ` N ) |
|
| 3 | isumrpcl.3 | |- ( ph -> N e. Z ) |
|
| 4 | isumrpcl.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 5 | isumrpcl.5 | |- ( ( ph /\ k e. Z ) -> A e. RR+ ) |
|
| 6 | isumrpcl.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 7 | 3 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( ph -> N e. ZZ ) |
| 10 | uzss | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
|
| 11 | 7 10 | syl | |- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 12 | 11 2 1 | 3sstr4g | |- ( ph -> W C_ Z ) |
| 13 | 12 | sselda | |- ( ( ph /\ k e. W ) -> k e. Z ) |
| 14 | 13 4 | syldan | |- ( ( ph /\ k e. W ) -> ( F ` k ) = A ) |
| 15 | 5 | rpred | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
| 16 | 13 15 | syldan | |- ( ( ph /\ k e. W ) -> A e. RR ) |
| 17 | 4 5 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR+ ) |
| 18 | 17 | rpcnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 19 | 1 3 18 | iserex | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| 20 | 6 19 | mpbid | |- ( ph -> seq N ( + , F ) e. dom ~~> ) |
| 21 | 2 9 14 16 20 | isumrecl | |- ( ph -> sum_ k e. W A e. RR ) |
| 22 | fveq2 | |- ( k = N -> ( F ` k ) = ( F ` N ) ) |
|
| 23 | 22 | eleq1d | |- ( k = N -> ( ( F ` k ) e. RR+ <-> ( F ` N ) e. RR+ ) ) |
| 24 | 17 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. RR+ ) |
| 25 | 23 24 3 | rspcdva | |- ( ph -> ( F ` N ) e. RR+ ) |
| 26 | seq1 | |- ( N e. ZZ -> ( seq N ( + , F ) ` N ) = ( F ` N ) ) |
|
| 27 | 9 26 | syl | |- ( ph -> ( seq N ( + , F ) ` N ) = ( F ` N ) ) |
| 28 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 29 | 9 28 | syl | |- ( ph -> N e. ( ZZ>= ` N ) ) |
| 30 | 29 2 | eleqtrrdi | |- ( ph -> N e. W ) |
| 31 | 16 | recnd | |- ( ( ph /\ k e. W ) -> A e. CC ) |
| 32 | 2 9 14 31 20 | isumclim2 | |- ( ph -> seq N ( + , F ) ~~> sum_ k e. W A ) |
| 33 | 12 | sseld | |- ( ph -> ( m e. W -> m e. Z ) ) |
| 34 | fveq2 | |- ( k = m -> ( F ` k ) = ( F ` m ) ) |
|
| 35 | 34 | eleq1d | |- ( k = m -> ( ( F ` k ) e. RR+ <-> ( F ` m ) e. RR+ ) ) |
| 36 | 35 | rspcv | |- ( m e. Z -> ( A. k e. Z ( F ` k ) e. RR+ -> ( F ` m ) e. RR+ ) ) |
| 37 | 33 24 36 | syl6ci | |- ( ph -> ( m e. W -> ( F ` m ) e. RR+ ) ) |
| 38 | 37 | imp | |- ( ( ph /\ m e. W ) -> ( F ` m ) e. RR+ ) |
| 39 | 38 | rpred | |- ( ( ph /\ m e. W ) -> ( F ` m ) e. RR ) |
| 40 | 38 | rpge0d | |- ( ( ph /\ m e. W ) -> 0 <_ ( F ` m ) ) |
| 41 | 2 30 32 39 40 | climserle | |- ( ph -> ( seq N ( + , F ) ` N ) <_ sum_ k e. W A ) |
| 42 | 27 41 | eqbrtrrd | |- ( ph -> ( F ` N ) <_ sum_ k e. W A ) |
| 43 | 21 25 42 | rpgecld | |- ( ph -> sum_ k e. W A e. RR+ ) |