This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrmaxlt | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( if ( A <_ B , B , A ) < C <-> ( A < C /\ B < C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrmax1 | |- ( ( A e. RR* /\ B e. RR* ) -> A <_ if ( A <_ B , B , A ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> A <_ if ( A <_ B , B , A ) ) |
| 3 | ifcl | |- ( ( B e. RR* /\ A e. RR* ) -> if ( A <_ B , B , A ) e. RR* ) |
|
| 4 | 3 | ancoms | |- ( ( A e. RR* /\ B e. RR* ) -> if ( A <_ B , B , A ) e. RR* ) |
| 5 | 4 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> if ( A <_ B , B , A ) e. RR* ) |
| 6 | xrlelttr | |- ( ( A e. RR* /\ if ( A <_ B , B , A ) e. RR* /\ C e. RR* ) -> ( ( A <_ if ( A <_ B , B , A ) /\ if ( A <_ B , B , A ) < C ) -> A < C ) ) |
|
| 7 | 5 6 | syld3an2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A <_ if ( A <_ B , B , A ) /\ if ( A <_ B , B , A ) < C ) -> A < C ) ) |
| 8 | 2 7 | mpand | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( if ( A <_ B , B , A ) < C -> A < C ) ) |
| 9 | xrmax2 | |- ( ( A e. RR* /\ B e. RR* ) -> B <_ if ( A <_ B , B , A ) ) |
|
| 10 | 9 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> B <_ if ( A <_ B , B , A ) ) |
| 11 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> B e. RR* ) |
|
| 12 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> C e. RR* ) |
|
| 13 | xrlelttr | |- ( ( B e. RR* /\ if ( A <_ B , B , A ) e. RR* /\ C e. RR* ) -> ( ( B <_ if ( A <_ B , B , A ) /\ if ( A <_ B , B , A ) < C ) -> B < C ) ) |
|
| 14 | 11 5 12 13 | syl3anc | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( B <_ if ( A <_ B , B , A ) /\ if ( A <_ B , B , A ) < C ) -> B < C ) ) |
| 15 | 10 14 | mpand | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( if ( A <_ B , B , A ) < C -> B < C ) ) |
| 16 | 8 15 | jcad | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( if ( A <_ B , B , A ) < C -> ( A < C /\ B < C ) ) ) |
| 17 | breq1 | |- ( B = if ( A <_ B , B , A ) -> ( B < C <-> if ( A <_ B , B , A ) < C ) ) |
|
| 18 | breq1 | |- ( A = if ( A <_ B , B , A ) -> ( A < C <-> if ( A <_ B , B , A ) < C ) ) |
|
| 19 | 17 18 | ifboth | |- ( ( B < C /\ A < C ) -> if ( A <_ B , B , A ) < C ) |
| 20 | 19 | ancoms | |- ( ( A < C /\ B < C ) -> if ( A <_ B , B , A ) < C ) |
| 21 | 16 20 | impbid1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( if ( A <_ B , B , A ) < C <-> ( A < C /\ B < C ) ) ) |