This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rational number is a real number. (Contributed by NM, 14-Nov-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qre | |- ( A e. QQ -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
|
| 2 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 3 | nnre | |- ( y e. NN -> y e. RR ) |
|
| 4 | nnne0 | |- ( y e. NN -> y =/= 0 ) |
|
| 5 | 3 4 | jca | |- ( y e. NN -> ( y e. RR /\ y =/= 0 ) ) |
| 6 | redivcl | |- ( ( x e. RR /\ y e. RR /\ y =/= 0 ) -> ( x / y ) e. RR ) |
|
| 7 | 6 | 3expb | |- ( ( x e. RR /\ ( y e. RR /\ y =/= 0 ) ) -> ( x / y ) e. RR ) |
| 8 | 2 5 7 | syl2an | |- ( ( x e. ZZ /\ y e. NN ) -> ( x / y ) e. RR ) |
| 9 | eleq1 | |- ( A = ( x / y ) -> ( A e. RR <-> ( x / y ) e. RR ) ) |
|
| 10 | 8 9 | syl5ibrcom | |- ( ( x e. ZZ /\ y e. NN ) -> ( A = ( x / y ) -> A e. RR ) ) |
| 11 | 10 | rexlimivv | |- ( E. x e. ZZ E. y e. NN A = ( x / y ) -> A e. RR ) |
| 12 | 1 11 | sylbi | |- ( A e. QQ -> A e. RR ) |