This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007) (Revised by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 2 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 3 | elicc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR* /\ A <_ C /\ C <_ B ) ) ) |
| 5 | mnfxr | |- -oo e. RR* |
|
| 6 | 5 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> -oo e. RR* ) |
| 7 | 1 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> A e. RR* ) |
| 8 | simpr1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> C e. RR* ) |
|
| 9 | mnflt | |- ( A e. RR -> -oo < A ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> -oo < A ) |
| 11 | simpr2 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> A <_ C ) |
|
| 12 | 6 7 8 10 11 | xrltletrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> -oo < C ) |
| 13 | 2 | ad2antlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> B e. RR* ) |
| 14 | pnfxr | |- +oo e. RR* |
|
| 15 | 14 | a1i | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> +oo e. RR* ) |
| 16 | simpr3 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> C <_ B ) |
|
| 17 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 18 | 17 | ad2antlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> B < +oo ) |
| 19 | 8 13 15 16 18 | xrlelttrd | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> C < +oo ) |
| 20 | xrrebnd | |- ( C e. RR* -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
|
| 21 | 8 20 | syl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> ( C e. RR <-> ( -oo < C /\ C < +oo ) ) ) |
| 22 | 12 19 21 | mpbir2and | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> C e. RR ) |
| 23 | 22 11 16 | 3jca | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR* /\ A <_ C /\ C <_ B ) ) -> ( C e. RR /\ A <_ C /\ C <_ B ) ) |
| 24 | 23 | ex | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR* /\ A <_ C /\ C <_ B ) -> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 25 | rexr | |- ( C e. RR -> C e. RR* ) |
|
| 26 | 25 | 3anim1i | |- ( ( C e. RR /\ A <_ C /\ C <_ B ) -> ( C e. RR* /\ A <_ C /\ C <_ B ) ) |
| 27 | 24 26 | impbid1 | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR* /\ A <_ C /\ C <_ B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 28 | 4 27 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |