This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for c1lip1 . (Contributed by Stefan O'Rear, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | c1liplem1.a | |- ( ph -> A e. RR ) |
|
| c1liplem1.b | |- ( ph -> B e. RR ) |
||
| c1liplem1.le | |- ( ph -> A <_ B ) |
||
| c1liplem1.f | |- ( ph -> F e. ( CC ^pm RR ) ) |
||
| c1liplem1.dv | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
||
| c1liplem1.cn | |- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
||
| c1liplem1.k | |- K = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) |
||
| Assertion | c1liplem1 | |- ( ph -> ( K e. RR /\ A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1liplem1.a | |- ( ph -> A e. RR ) |
|
| 2 | c1liplem1.b | |- ( ph -> B e. RR ) |
|
| 3 | c1liplem1.le | |- ( ph -> A <_ B ) |
|
| 4 | c1liplem1.f | |- ( ph -> F e. ( CC ^pm RR ) ) |
|
| 5 | c1liplem1.dv | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 6 | c1liplem1.cn | |- ( ph -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 7 | c1liplem1.k | |- K = sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) |
|
| 8 | imassrn | |- ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ ran abs |
|
| 9 | absf | |- abs : CC --> RR |
|
| 10 | frn | |- ( abs : CC --> RR -> ran abs C_ RR ) |
|
| 11 | 9 10 | ax-mp | |- ran abs C_ RR |
| 12 | 8 11 | sstri | |- ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR |
| 13 | 12 | a1i | |- ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) |
| 14 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 15 | ffun | |- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
|
| 16 | 14 15 | ax-mp | |- Fun ( RR _D F ) |
| 17 | 16 | a1i | |- ( ph -> Fun ( RR _D F ) ) |
| 18 | cncff | |- ( ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
|
| 19 | fdm | |- ( ( ( RR _D F ) |` ( A [,] B ) ) : ( A [,] B ) --> RR -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
|
| 20 | 5 18 19 | 3syl | |- ( ph -> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
| 21 | ssdmres | |- ( ( A [,] B ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( A [,] B ) ) = ( A [,] B ) ) |
|
| 22 | 20 21 | sylibr | |- ( ph -> ( A [,] B ) C_ dom ( RR _D F ) ) |
| 23 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 24 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 25 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 26 | 23 24 3 25 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 27 | funfvima2 | |- ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( A e. ( A [,] B ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
|
| 28 | 27 | imp | |- ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ A e. ( A [,] B ) ) -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 29 | 17 22 26 28 | syl21anc | |- ( ph -> ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 30 | ffun | |- ( abs : CC --> RR -> Fun abs ) |
|
| 31 | 9 30 | ax-mp | |- Fun abs |
| 32 | imassrn | |- ( ( RR _D F ) " ( A [,] B ) ) C_ ran ( RR _D F ) |
|
| 33 | frn | |- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ran ( RR _D F ) C_ CC ) |
|
| 34 | 14 33 | ax-mp | |- ran ( RR _D F ) C_ CC |
| 35 | 32 34 | sstri | |- ( ( RR _D F ) " ( A [,] B ) ) C_ CC |
| 36 | 9 | fdmi | |- dom abs = CC |
| 37 | 35 36 | sseqtrri | |- ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs |
| 38 | funfvima2 | |- ( ( Fun abs /\ ( ( RR _D F ) " ( A [,] B ) ) C_ dom abs ) -> ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
|
| 39 | 31 37 38 | mp2an | |- ( ( ( RR _D F ) ` A ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
| 40 | ne0i | |- ( ( abs ` ( ( RR _D F ) ` A ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
|
| 41 | 29 39 40 | 3syl | |- ( ph -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
| 42 | ax-resscn | |- RR C_ CC |
|
| 43 | ssid | |- CC C_ CC |
|
| 44 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
|
| 45 | 42 43 44 | mp2an | |- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
| 46 | 45 5 | sselid | |- ( ph -> ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 47 | cniccbdd | |- ( ( A e. RR /\ B e. RR /\ ( ( RR _D F ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) |
|
| 48 | 1 2 46 47 | syl3anc | |- ( ph -> E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) |
| 49 | fvelima | |- ( ( Fun abs /\ b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) |
|
| 50 | 31 49 | mpan | |- ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b ) |
| 51 | fvres | |- ( b e. ( A [,] B ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) |
|
| 52 | 51 | adantl | |- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) = ( ( RR _D F ) ` b ) ) |
| 53 | 52 | fveq2d | |- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) = ( abs ` ( ( RR _D F ) ` b ) ) ) |
| 54 | 2fveq3 | |- ( x = b -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) = ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) ) |
|
| 55 | 54 | breq1d | |- ( x = b -> ( ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a <-> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) ) |
| 56 | 55 | rspccva | |- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` b ) ) <_ a ) |
| 57 | 53 56 | eqbrtrrd | |- ( ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) |
| 58 | 57 | adantll | |- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( abs ` ( ( RR _D F ) ` b ) ) <_ a ) |
| 59 | fveq2 | |- ( ( ( RR _D F ) ` b ) = y -> ( abs ` ( ( RR _D F ) ` b ) ) = ( abs ` y ) ) |
|
| 60 | 59 | breq1d | |- ( ( ( RR _D F ) ` b ) = y -> ( ( abs ` ( ( RR _D F ) ` b ) ) <_ a <-> ( abs ` y ) <_ a ) ) |
| 61 | 58 60 | syl5ibcom | |- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ b e. ( A [,] B ) ) -> ( ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) |
| 62 | 61 | rexlimdva | |- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y -> ( abs ` y ) <_ a ) ) |
| 63 | fvelima | |- ( ( Fun ( RR _D F ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) |
|
| 64 | 16 63 | mpan | |- ( y e. ( ( RR _D F ) " ( A [,] B ) ) -> E. b e. ( A [,] B ) ( ( RR _D F ) ` b ) = y ) |
| 65 | 62 64 | impel | |- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` y ) <_ a ) |
| 66 | breq1 | |- ( ( abs ` y ) = b -> ( ( abs ` y ) <_ a <-> b <_ a ) ) |
|
| 67 | 65 66 | syl5ibcom | |- ( ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) /\ y e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( ( abs ` y ) = b -> b <_ a ) ) |
| 68 | 67 | rexlimdva | |- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( E. y e. ( ( RR _D F ) " ( A [,] B ) ) ( abs ` y ) = b -> b <_ a ) ) |
| 69 | 50 68 | syl5 | |- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> ( b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) -> b <_ a ) ) |
| 70 | 69 | ralrimiv | |- ( ( ( ph /\ a e. RR ) /\ A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a ) -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
| 71 | 70 | ex | |- ( ( ph /\ a e. RR ) -> ( A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) |
| 72 | 71 | reximdva | |- ( ph -> ( E. a e. RR A. x e. ( A [,] B ) ( abs ` ( ( ( RR _D F ) |` ( A [,] B ) ) ` x ) ) <_ a -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) ) |
| 73 | 48 72 | mpd | |- ( ph -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
| 74 | 13 41 73 | suprcld | |- ( ph -> sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) e. RR ) |
| 75 | 7 74 | eqeltrid | |- ( ph -> K e. RR ) |
| 76 | simplrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
|
| 77 | 76 | fvresd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) = ( F ` y ) ) |
| 78 | cncff | |- ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
|
| 79 | 6 78 | syl | |- ( ph -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 80 | 79 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) : ( A [,] B ) --> RR ) |
| 81 | 80 76 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. RR ) |
| 82 | 81 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` y ) e. CC ) |
| 83 | 77 82 | eqeltrrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. CC ) |
| 84 | simplrl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
|
| 85 | 84 | fvresd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) = ( F ` x ) ) |
| 86 | 80 84 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. RR ) |
| 87 | 86 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) ` x ) e. CC ) |
| 88 | 85 87 | eqeltrrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. CC ) |
| 89 | 83 88 | subcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. CC ) |
| 90 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 91 | 1 2 90 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 92 | 91 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
| 93 | 92 76 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
| 94 | 92 84 | sseldd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
| 95 | 93 94 | resubcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
| 96 | 95 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. CC ) |
| 97 | simpr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
|
| 98 | difrp | |- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( y - x ) e. RR+ ) ) |
|
| 99 | 94 93 98 | syl2anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> ( y - x ) e. RR+ ) ) |
| 100 | 97 99 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR+ ) |
| 101 | 100 | rpne0d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) =/= 0 ) |
| 102 | 89 96 101 | absdivd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) ) |
| 103 | 12 | a1i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) C_ RR ) |
| 104 | 41 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) =/= (/) ) |
| 105 | 73 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. RR A. b e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) b <_ a ) |
| 106 | 31 | a1i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> Fun abs ) |
| 107 | 89 96 101 | divcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. CC ) |
| 108 | 107 36 | eleqtrrdi | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) |
| 109 | 94 | rexrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR* ) |
| 110 | 93 | rexrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR* ) |
| 111 | 94 93 97 | ltled | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x <_ y ) |
| 112 | ubicc2 | |- ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> y e. ( x [,] y ) ) |
|
| 113 | 109 110 111 112 | syl3anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( x [,] y ) ) |
| 114 | 113 | fvresd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` y ) = ( F ` y ) ) |
| 115 | lbicc2 | |- ( ( x e. RR* /\ y e. RR* /\ x <_ y ) -> x e. ( x [,] y ) ) |
|
| 116 | 109 110 111 115 | syl3anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( x [,] y ) ) |
| 117 | 116 | fvresd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( x [,] y ) ) ` x ) = ( F ` x ) ) |
| 118 | 114 117 | oveq12d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) = ( ( F ` y ) - ( F ` x ) ) ) |
| 119 | 118 | oveq1d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) = ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
| 120 | iccss2 | |- ( ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) -> ( x [,] y ) C_ ( A [,] B ) ) |
|
| 121 | 120 | ad2antlr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ ( A [,] B ) ) |
| 122 | 121 | resabs1d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) = ( F |` ( x [,] y ) ) ) |
| 123 | 6 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) |
| 124 | rescncf | |- ( ( x [,] y ) C_ ( A [,] B ) -> ( ( F |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) ) |
|
| 125 | 121 123 124 | sylc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F |` ( A [,] B ) ) |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) |
| 126 | 122 125 | eqeltrrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F |` ( x [,] y ) ) e. ( ( x [,] y ) -cn-> RR ) ) |
| 127 | 42 | a1i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> RR C_ CC ) |
| 128 | 4 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F e. ( CC ^pm RR ) ) |
| 129 | cnex | |- CC e. _V |
|
| 130 | reex | |- RR e. _V |
|
| 131 | 129 130 | elpm2 | |- ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 132 | 131 | simplbi | |- ( F e. ( CC ^pm RR ) -> F : dom F --> CC ) |
| 133 | 128 132 | syl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : dom F --> CC ) |
| 134 | 131 | simprbi | |- ( F e. ( CC ^pm RR ) -> dom F C_ RR ) |
| 135 | 128 134 | syl | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom F C_ RR ) |
| 136 | iccssre | |- ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) |
|
| 137 | 94 93 136 | syl2anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x [,] y ) C_ RR ) |
| 138 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 139 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 140 | 138 139 | dvres | |- ( ( ( RR C_ CC /\ F : dom F --> CC ) /\ ( dom F C_ RR /\ ( x [,] y ) C_ RR ) ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) |
| 141 | 127 133 135 137 140 | syl22anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) ) |
| 142 | iccntr | |- ( ( x e. RR /\ y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
|
| 143 | 94 93 142 | syl2anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) = ( x (,) y ) ) |
| 144 | 143 | reseq2d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) |
| 145 | 141 144 | eqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( RR _D ( F |` ( x [,] y ) ) ) = ( ( RR _D F ) |` ( x (,) y ) ) ) |
| 146 | 145 | dmeqd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = dom ( ( RR _D F ) |` ( x (,) y ) ) ) |
| 147 | ioossicc | |- ( x (,) y ) C_ ( x [,] y ) |
|
| 148 | 147 121 | sstrid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ ( A [,] B ) ) |
| 149 | 22 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ dom ( RR _D F ) ) |
| 150 | 148 149 | sstrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x (,) y ) C_ dom ( RR _D F ) ) |
| 151 | ssdmres | |- ( ( x (,) y ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) |
|
| 152 | 150 151 | sylib | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( ( RR _D F ) |` ( x (,) y ) ) = ( x (,) y ) ) |
| 153 | 146 152 | eqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> dom ( RR _D ( F |` ( x [,] y ) ) ) = ( x (,) y ) ) |
| 154 | 94 93 97 126 153 | mvth | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) ) |
| 155 | 145 | fveq1d | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) |
| 156 | 155 | adantrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) ) |
| 157 | fvres | |- ( a e. ( x (,) y ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
|
| 158 | 157 | ad2antll | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D F ) |` ( x (,) y ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
| 159 | 156 158 | eqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( RR _D F ) ` a ) ) |
| 160 | 16 | a1i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> Fun ( RR _D F ) ) |
| 161 | 22 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( A [,] B ) C_ dom ( RR _D F ) ) |
| 162 | 148 | sseld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> a e. ( A [,] B ) ) ) |
| 163 | 162 | impr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> a e. ( A [,] B ) ) |
| 164 | funfvima2 | |- ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) -> ( a e. ( A [,] B ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
|
| 165 | 164 | imp | |- ( ( ( Fun ( RR _D F ) /\ ( A [,] B ) C_ dom ( RR _D F ) ) /\ a e. ( A [,] B ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 166 | 160 161 163 165 | syl21anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D F ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 167 | 159 166 | eqeltrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 168 | eleq1 | |- ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) e. ( ( RR _D F ) " ( A [,] B ) ) <-> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
|
| 169 | 167 168 | syl5ibcom | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ ( x < y /\ a e. ( x (,) y ) ) ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
| 170 | 169 | expr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( a e. ( x (,) y ) -> ( ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
| 171 | 170 | rexlimdv | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( E. a e. ( x (,) y ) ( ( RR _D ( F |` ( x [,] y ) ) ) ` a ) = ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) ) |
| 172 | 154 171 | mpd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F |` ( x [,] y ) ) ` y ) - ( ( F |` ( x [,] y ) ) ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 173 | 119 172 | eqeltrrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) |
| 174 | funfvima | |- ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) ) |
|
| 175 | 174 | imp | |- ( ( ( Fun abs /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. dom abs ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( ( RR _D F ) " ( A [,] B ) ) ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
| 176 | 106 108 173 175 | syl21anc | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) e. ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) ) |
| 177 | 103 104 105 176 | suprubd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ sup ( ( abs " ( ( RR _D F ) " ( A [,] B ) ) ) , RR , < ) ) |
| 178 | 177 7 | breqtrrdi | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) <_ K ) |
| 179 | 102 178 | eqbrtrrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K ) |
| 180 | 89 | abscld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) e. RR ) |
| 181 | 75 | ad2antrr | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. RR ) |
| 182 | 96 101 | absrpcld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. RR+ ) |
| 183 | 180 181 182 | ledivmuld | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) / ( abs ` ( y - x ) ) ) <_ K <-> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) ) |
| 184 | 179 183 | mpbid | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( ( abs ` ( y - x ) ) x. K ) ) |
| 185 | 182 | rpcnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( y - x ) ) e. CC ) |
| 186 | 181 | recnd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> K e. CC ) |
| 187 | 185 186 | mulcomd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( abs ` ( y - x ) ) x. K ) = ( K x. ( abs ` ( y - x ) ) ) ) |
| 188 | 184 187 | breqtrd | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) |
| 189 | 188 | ex | |- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) |
| 190 | 189 | ralrimivva | |- ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) |
| 191 | 75 190 | jca | |- ( ph -> ( K e. RR /\ A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( K x. ( abs ` ( y - x ) ) ) ) ) ) |