This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| dprdfadd.4 | |- ( ph -> H e. W ) |
||
| dprdfsub.b | |- .- = ( -g ` G ) |
||
| Assertion | dprdfsub | |- ( ph -> ( ( F oF .- H ) e. W /\ ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | dprdfadd.4 | |- ( ph -> H e. W ) |
|
| 7 | dprdfsub.b | |- .- = ( -g ` G ) |
|
| 8 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 9 | 2 3 4 5 8 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( F ` k ) e. ( Base ` G ) ) |
| 11 | 2 3 4 6 8 | dprdff | |- ( ph -> H : I --> ( Base ` G ) ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( H ` k ) e. ( Base ` G ) ) |
| 13 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 14 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 15 | 8 13 14 7 | grpsubval | |- ( ( ( F ` k ) e. ( Base ` G ) /\ ( H ` k ) e. ( Base ` G ) ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 16 | 10 12 15 | syl2anc | |- ( ( ph /\ k e. I ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 17 | 16 | mpteq2dva | |- ( ph -> ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 18 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 19 | 9 | feqmptd | |- ( ph -> F = ( k e. I |-> ( F ` k ) ) ) |
| 20 | 11 | feqmptd | |- ( ph -> H = ( k e. I |-> ( H ` k ) ) ) |
| 21 | 18 10 12 19 20 | offval2 | |- ( ph -> ( F oF .- H ) = ( k e. I |-> ( ( F ` k ) .- ( H ` k ) ) ) ) |
| 22 | fvexd | |- ( ( ph /\ k e. I ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) |
|
| 23 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 24 | 3 23 | syl | |- ( ph -> G e. Grp ) |
| 25 | 8 14 24 | grpinvf1o | |- ( ph -> ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) ) |
| 26 | f1of | |- ( ( invg ` G ) : ( Base ` G ) -1-1-onto-> ( Base ` G ) -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
|
| 27 | 25 26 | syl | |- ( ph -> ( invg ` G ) : ( Base ` G ) --> ( Base ` G ) ) |
| 28 | 27 | feqmptd | |- ( ph -> ( invg ` G ) = ( x e. ( Base ` G ) |-> ( ( invg ` G ) ` x ) ) ) |
| 29 | fveq2 | |- ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) |
|
| 30 | 12 20 28 29 | fmptco | |- ( ph -> ( ( invg ` G ) o. H ) = ( k e. I |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 31 | 18 10 22 19 30 | offval2 | |- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. I |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 32 | 17 21 31 | 3eqtr4d | |- ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) |
| 33 | 1 2 3 4 6 14 | dprdfinv | |- ( ph -> ( ( ( invg ` G ) o. H ) e. W /\ ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 34 | 33 | simpld | |- ( ph -> ( ( invg ` G ) o. H ) e. W ) |
| 35 | 1 2 3 4 5 34 13 | dprdfadd | |- ( ph -> ( ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W /\ ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) ) |
| 36 | 35 | simpld | |- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) e. W ) |
| 37 | 32 36 | eqeltrd | |- ( ph -> ( F oF .- H ) e. W ) |
| 38 | 32 | oveq2d | |- ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
| 39 | 33 | simprd | |- ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) |
| 40 | 39 | oveq2d | |- ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 41 | 35 | simprd | |- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) |
| 42 | 8 | dprdssv | |- ( G DProd S ) C_ ( Base ` G ) |
| 43 | 1 2 3 4 5 | eldprdi | |- ( ph -> ( G gsum F ) e. ( G DProd S ) ) |
| 44 | 42 43 | sselid | |- ( ph -> ( G gsum F ) e. ( Base ` G ) ) |
| 45 | 1 2 3 4 6 | eldprdi | |- ( ph -> ( G gsum H ) e. ( G DProd S ) ) |
| 46 | 42 45 | sselid | |- ( ph -> ( G gsum H ) e. ( Base ` G ) ) |
| 47 | 8 13 14 7 | grpsubval | |- ( ( ( G gsum F ) e. ( Base ` G ) /\ ( G gsum H ) e. ( Base ` G ) ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 48 | 44 46 47 | syl2anc | |- ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 49 | 40 41 48 | 3eqtr4d | |- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
| 50 | 38 49 | eqtrd | |- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |
| 51 | 37 50 | jca | |- ( ph -> ( ( F oF .- H ) e. W /\ ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) ) |