This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppun.f | |- ( ph -> F finSupp Z ) |
|
| fsuppun.g | |- ( ph -> G finSupp Z ) |
||
| Assertion | fsuppunfi | |- ( ph -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | |- ( ph -> F finSupp Z ) |
|
| 2 | fsuppun.g | |- ( ph -> G finSupp Z ) |
|
| 3 | fsuppimp | |- ( F finSupp Z -> ( Fun F /\ ( F supp Z ) e. Fin ) ) |
|
| 4 | fsuppimp | |- ( G finSupp Z -> ( Fun G /\ ( G supp Z ) e. Fin ) ) |
|
| 5 | unfi | |- ( ( ( F supp Z ) e. Fin /\ ( G supp Z ) e. Fin ) -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) |
|
| 6 | 5 | expcom | |- ( ( G supp Z ) e. Fin -> ( ( F supp Z ) e. Fin -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) ) |
| 7 | 6 | adantl | |- ( ( Fun G /\ ( G supp Z ) e. Fin ) -> ( ( F supp Z ) e. Fin -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) ) |
| 8 | 2 4 7 | 3syl | |- ( ph -> ( ( F supp Z ) e. Fin -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) ) |
| 9 | 8 | com12 | |- ( ( F supp Z ) e. Fin -> ( ph -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) ) |
| 10 | 3 9 | simpl2im | |- ( F finSupp Z -> ( ph -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) ) |
| 11 | 1 10 | mpcom | |- ( ph -> ( ( F supp Z ) u. ( G supp Z ) ) e. Fin ) |