This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funisfsupp | |- ( ( Fun R /\ R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( R supp Z ) e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsupp | |- ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( Fun R /\ R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
| 3 | ibar | |- ( Fun R -> ( ( R supp Z ) e. Fin <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
|
| 4 | 3 | bicomd | |- ( Fun R -> ( ( Fun R /\ ( R supp Z ) e. Fin ) <-> ( R supp Z ) e. Fin ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( Fun R /\ R e. V /\ Z e. W ) -> ( ( Fun R /\ ( R supp Z ) e. Fin ) <-> ( R supp Z ) e. Fin ) ) |
| 6 | 2 5 | bitrd | |- ( ( Fun R /\ R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( R supp Z ) e. Fin ) ) |