This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported function in S is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| dprdff.1 | |- ( ph -> G dom DProd S ) |
||
| dprdff.2 | |- ( ph -> dom S = I ) |
||
| dprdff.3 | |- ( ph -> F e. W ) |
||
| dprdff.b | |- B = ( Base ` G ) |
||
| Assertion | dprdff | |- ( ph -> F : I --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 2 | dprdff.1 | |- ( ph -> G dom DProd S ) |
|
| 3 | dprdff.2 | |- ( ph -> dom S = I ) |
|
| 4 | dprdff.3 | |- ( ph -> F e. W ) |
|
| 5 | dprdff.b | |- B = ( Base ` G ) |
|
| 6 | 1 2 3 | dprdw | |- ( ph -> ( F e. W <-> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) ) |
| 7 | 4 6 | mpbid | |- ( ph -> ( F Fn I /\ A. x e. I ( F ` x ) e. ( S ` x ) /\ F finSupp .0. ) ) |
| 8 | 7 | simp1d | |- ( ph -> F Fn I ) |
| 9 | 7 | simp2d | |- ( ph -> A. x e. I ( F ` x ) e. ( S ` x ) ) |
| 10 | 2 3 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 12 | 5 | subgss | |- ( ( S ` x ) e. ( SubGrp ` G ) -> ( S ` x ) C_ B ) |
| 13 | 11 12 | syl | |- ( ( ph /\ x e. I ) -> ( S ` x ) C_ B ) |
| 14 | 13 | sseld | |- ( ( ph /\ x e. I ) -> ( ( F ` x ) e. ( S ` x ) -> ( F ` x ) e. B ) ) |
| 15 | 14 | ralimdva | |- ( ph -> ( A. x e. I ( F ` x ) e. ( S ` x ) -> A. x e. I ( F ` x ) e. B ) ) |
| 16 | 9 15 | mpd | |- ( ph -> A. x e. I ( F ` x ) e. B ) |
| 17 | ffnfv | |- ( F : I --> B <-> ( F Fn I /\ A. x e. I ( F ` x ) e. B ) ) |
|
| 18 | 8 16 17 | sylanbrc | |- ( ph -> F : I --> B ) |