This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| dprdff.1 | |- ( ph -> G dom DProd S ) |
||
| dprdff.2 | |- ( ph -> dom S = I ) |
||
| dprdff.3 | |- ( ph -> F e. W ) |
||
| dprdfcntz.z | |- Z = ( Cntz ` G ) |
||
| Assertion | dprdfcntz | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 2 | dprdff.1 | |- ( ph -> G dom DProd S ) |
|
| 3 | dprdff.2 | |- ( ph -> dom S = I ) |
|
| 4 | dprdff.3 | |- ( ph -> F e. W ) |
|
| 5 | dprdfcntz.z | |- Z = ( Cntz ` G ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | 1 2 3 4 6 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 8 | 7 | ffnd | |- ( ph -> F Fn I ) |
| 9 | 7 | ffvelcdmda | |- ( ( ph /\ y e. I ) -> ( F ` y ) e. ( Base ` G ) ) |
| 10 | simpr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y = z ) -> y = z ) |
|
| 11 | 10 | fveq2d | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y = z ) -> ( F ` y ) = ( F ` z ) ) |
| 12 | 10 | equcomd | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y = z ) -> z = y ) |
| 13 | 12 | fveq2d | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y = z ) -> ( F ` z ) = ( F ` y ) ) |
| 14 | 11 13 | oveq12d | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y = z ) -> ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
| 15 | 2 | ad3antrrr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> G dom DProd S ) |
| 16 | 3 | ad3antrrr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> dom S = I ) |
| 17 | simpllr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> y e. I ) |
|
| 18 | simplr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> z e. I ) |
|
| 19 | simpr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> y =/= z ) |
|
| 20 | 15 16 17 18 19 5 | dprdcntz | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> ( S ` y ) C_ ( Z ` ( S ` z ) ) ) |
| 21 | 1 2 3 4 | dprdfcl | |- ( ( ph /\ y e. I ) -> ( F ` y ) e. ( S ` y ) ) |
| 22 | 21 | ad2antrr | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> ( F ` y ) e. ( S ` y ) ) |
| 23 | 20 22 | sseldd | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> ( F ` y ) e. ( Z ` ( S ` z ) ) ) |
| 24 | 1 2 3 4 | dprdfcl | |- ( ( ph /\ z e. I ) -> ( F ` z ) e. ( S ` z ) ) |
| 25 | 24 | ad4ant13 | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> ( F ` z ) e. ( S ` z ) ) |
| 26 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 27 | 26 5 | cntzi | |- ( ( ( F ` y ) e. ( Z ` ( S ` z ) ) /\ ( F ` z ) e. ( S ` z ) ) -> ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
| 28 | 23 25 27 | syl2anc | |- ( ( ( ( ph /\ y e. I ) /\ z e. I ) /\ y =/= z ) -> ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
| 29 | 14 28 | pm2.61dane | |- ( ( ( ph /\ y e. I ) /\ z e. I ) -> ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
| 30 | 29 | ralrimiva | |- ( ( ph /\ y e. I ) -> A. z e. I ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
| 31 | 8 | adantr | |- ( ( ph /\ y e. I ) -> F Fn I ) |
| 32 | oveq2 | |- ( x = ( F ` z ) -> ( ( F ` y ) ( +g ` G ) x ) = ( ( F ` y ) ( +g ` G ) ( F ` z ) ) ) |
|
| 33 | oveq1 | |- ( x = ( F ` z ) -> ( x ( +g ` G ) ( F ` y ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) |
|
| 34 | 32 33 | eqeq12d | |- ( x = ( F ` z ) -> ( ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) <-> ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) ) |
| 35 | 34 | ralrn | |- ( F Fn I -> ( A. x e. ran F ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) <-> A. z e. I ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) ) |
| 36 | 31 35 | syl | |- ( ( ph /\ y e. I ) -> ( A. x e. ran F ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) <-> A. z e. I ( ( F ` y ) ( +g ` G ) ( F ` z ) ) = ( ( F ` z ) ( +g ` G ) ( F ` y ) ) ) ) |
| 37 | 30 36 | mpbird | |- ( ( ph /\ y e. I ) -> A. x e. ran F ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) ) |
| 38 | 7 | frnd | |- ( ph -> ran F C_ ( Base ` G ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ y e. I ) -> ran F C_ ( Base ` G ) ) |
| 40 | 6 26 5 | elcntz | |- ( ran F C_ ( Base ` G ) -> ( ( F ` y ) e. ( Z ` ran F ) <-> ( ( F ` y ) e. ( Base ` G ) /\ A. x e. ran F ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) ) ) ) |
| 41 | 39 40 | syl | |- ( ( ph /\ y e. I ) -> ( ( F ` y ) e. ( Z ` ran F ) <-> ( ( F ` y ) e. ( Base ` G ) /\ A. x e. ran F ( ( F ` y ) ( +g ` G ) x ) = ( x ( +g ` G ) ( F ` y ) ) ) ) ) |
| 42 | 9 37 41 | mpbir2and | |- ( ( ph /\ y e. I ) -> ( F ` y ) e. ( Z ` ran F ) ) |
| 43 | 42 | ralrimiva | |- ( ph -> A. y e. I ( F ` y ) e. ( Z ` ran F ) ) |
| 44 | ffnfv | |- ( F : I --> ( Z ` ran F ) <-> ( F Fn I /\ A. y e. I ( F ` y ) e. ( Z ` ran F ) ) ) |
|
| 45 | 8 43 44 | sylanbrc | |- ( ph -> F : I --> ( Z ` ran F ) ) |
| 46 | 45 | frnd | |- ( ph -> ran F C_ ( Z ` ran F ) ) |